Ir al contenido

Documat


Modelos de Aprendizaje Profundo para el Procesamiento y Clasificación de Imágenes y Vídeo

  • Autores: Santiago López Tapia Árbol académico
  • Directores de la Tesis: Aggelos K. Katsaggelos (dir. tes.) Árbol académico
  • Lectura: En la Universidad de Granada ( España ) en 2021
  • Idioma: español
  • Número de páginas: 182
  • Tribunal Calificador de la Tesis: Javier Mateos Delgado (presid.) Árbol académico, Miguel Vega López (secret.) Árbol académico, Pablo Morales Álvarez (voc.) Árbol académico, Valeriana Naranjo Ornedo (voc.) Árbol académico, María Gloria Bueno García (voc.) Árbol académico
  • Enlaces
    • Tesis en acceso abierto en: DIGIBUG
  • Resumen
    • Motivated by the success of DL-based models in image and video problems, in this dissertation, we develop DL-models for challenging image and video formation and interpretation tasks. These are image and video SR, BID, threat detection in PMMWIs and mitosis detection in Whole-Slide Images (WSIs). In this thesis, one common point to all contributions is the use of domain knowledge to improve the solution by developing and applying specialized architectures, regularizations and restrictions. In the next subsections, we present the tasks that we have addressed in this dissertation. Next, we provide a brief introduction to the main DL-based models used in this dissertation: CNNs and Generative Adversarial Networks (GANs). Finally, we present the objectives of this work and the structure of the remainder of this dissertation.


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno