Ir al contenido

Documat


A geometric and physical study of Riemann's non-diferentiable function

  • Autores: Daniel Eceizabarrena
  • Directores de la Tesis: Luis Vega González (dir. tes.) Árbol académico
  • Lectura: En la Universidad del País Vasco - Euskal Herriko Unibertsitatea ( España ) en 2020
  • Idioma: inglés
  • Tribunal Calificador de la Tesis: Francisco Javier Duoandikoetxea Zuazo (presid.) Árbol académico, Ana Vargas Rey (secret.) Árbol académico, Didier Smets (voc.) Árbol académico
  • Enlaces
    • Tesis en acceso abierto en: ADDI
  • Resumen
    • Riemann's non-differentiable function is a classic example of a continuous but almost nowheredifferentiable function, whose analytic regularity has been widely studied since it was proposedin the second half of the 19th century. But recently, strong evidence has been found that one ofits generalisation to the complex plane can be regarded as the trajectory of a particle in thecontext of the evolution of vortex filaments. It can, thus, be given a physical and geometricinterpretation, and many questions arise in these settings accordingly.It is the purpose of this dissertation to describe, study and prove geometrically and physicallymotivated properties of Riemann's non-differentiable function. In this direction, a geometricanalysis of concepts such as the Hausdorff dimension, geometric differentiability and tangentswill be carried out, and the relationship with physical phenomena such as the Talbot effect,turbulence, intermittency and multifractality will be explained.


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno