Airam Expósito Márquez
La movilidad y transporte de pasajeros y mercancías es uno de los principales desafíos para el desarrollo de islas, ciudades y territorios. La prosperidad, competitividad y sostenibilidad de múltiples áreas económicas se ven afectadas por la movilidad. El crecimiento de la población, la capacidad limitada de los sistemas e infraestructuras de transporte y el impacto medioambiental del transporte fuerza a los territorios en el desarrollo de una movilidad sostenible y efectiva. En este complejo escenario, un territorio con una gestión del transporte y movilidad sostenible y eficiente ofrece a los ciudadanos una mejor calidad de vida.
La transformación digital y las TIC impulsan la mejora de los servicios de movilidad para los ciudadanos, ayudan a gestionar correctamente la demanda en las redes de transporte y generan valor económico y ambiental. El surgimiento de la movilidad inteligente integra el sistema de transporte, las infraestructuras y las tecnologías para hacer que el transporte de pasajeros y mercancías sea eficiente, accesible, más seguro y limpio. Por lo tanto, las estrategias de movilidad inteligente deben ser capaces de proporcionar beneficios económicos y ambientales tangibles y mejorar la calidad del transporte de mercancías y pasajeros. Significa tomar acciones en múltiples frentes; gestión eficiente de la carga y la movilidad de pasajeros, reducción del impacto medioambiental, mejora de la planificación y la eficiencia del transporte público, reducción de la congestión, optimización del uso de la infraestructura física, entre otros.
Una de las operaciones clave para los servicios de movilidad es la planificación de rutas. Esta actividad operativa incluye principalmente dos modos de transporte, mercancías y pasajeros. La mayoría de los transportes de mercancías y pasajeros se realizan a través de transporte por carretera. Las decisiones tomadas con respecto a las operaciones de planificación de rutas afectan económica y ambientalmente, y en general a la calidad de vida de los ciudadanos en los territorios en los que se desarrollan. Las operaciones de planificación de rutas se pueden optimizar para mejorar diferentes aspectos como la calidad del servicio, costes y flexibilidad del mismo, consumo de energía, impacto medioambiental, sostenibilidad, entre otros.
La tarea de abordar las operaciones de planificación de rutas da lugar a la aparición de complejos problemas de optimización combinatoria que requieren considerar múltiples requisitos, restricciones, fuentes de información, entre otros. En la mayoría de los casos, estos problemas de optimización se clasifican como NP-duros con respecto a su complejidad computacional. Esta clase de problemas requiere enfoques de optimización eficientes y estrategias inteligentes para obtener soluciones de alta calidad y evitar grandes tiempos de cálculo. En este sentido, los enfoques de optimización aproximados, como las heurísticas y metaheurísticas, y las técnicas inteligentes inherentes a la Inteligencia Artificial y la Soft Computing han demostrado ser métodos efectivos y eficientes para resolver complejos problemas de planificación de rutas.
Esta tesis presentada en la modalidad de compendio de publicaciones tiene como objetivo diseñar, implementar y validar procedimientos de optimización simples, eficientes y flexibles basados en Inteligencia Artificial y Soft Computing dedicados a mejorar las soluciones de planificación de rutas en los contextos de transporte de mercancías, planificación personalizada de rutas turísticas y transporte eco-eficiente de residuos reciclables. Se han propuesto varios enfoques de solución para resolver problemas como Vehicle Routing Problem with Time Windows, Periodic Vehicle Routing Problem with Time Windows, Team Orienteering Problem with Time Windows, Tourist Trip Design Problem y variantes del mundo real y nuevas extensiones de los problemas mencionados. La calidad del servicio, la orientación al cliente, la imprecisión e incertidumbre en la información y la ecoeficiencia son criterios considerados en los problemas de planificación de rutas identificados. Los experimentos computacionales han demostrado que los métodos y técnicas propuestos son adecuados para obtener soluciones de alta calidad en tiempos computacionales cortos y pueden incorporarse como módulos en sistemas de transporte inteligentes.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados