Fulgencio Navarro Fajardo
Muchas y muy diferentes son las propuestas que se han desarrollado en el área de la visión artificial para la extracción de información de las imágenes y su posterior uso. Entra las más destacadas se encuentran las conocidas como características locales, del inglés local features, que detectan puntos o áreas de la imagen con ciertas características de interés, y las describen usando información de su entorno (local). También destacan las regiones en este área, y en especial este trabajo se ha centrado en los segmentadores en regiones, cuyo objetivo es agrupar la información de la imagen atendiendo a diversos criterios.
Pese al enorme potencial de estas técnicas, y su probado éxito en diversas aplicaciones, su definición lleva implícita una serie de limitaciones funcionales que les han impedido exportar sus capacidades a otras áreas de aplicación. Se pretende impulsar el uso de estas herramientas en dichas aplicaciones, y por tanto mejorar los resultados del estado del arte, mediante la propuesta de un marco de desarrollo de nuevas soluciones.
En concreto, la hipótesis principal del proyecto es que las capacidades de las características locales y los segmentadores en regiones son complementarias, y que su combinación, realizada de la forma adecuada, las maximiza a la vez que minimiza sus limitaciones. El principal objetivo, y por tanto la principal contribución del proyecto, es validar dicha hipótesis mediante la propuesta de un marco de desarrollo de nuevas soluciones combinando características locales y segmentadores para técnicas con capacidades mejoradas.
Al tratarse de un marco de combinación de dos técnicas, el proceso de validación se ha llevado a cabo en dos pasos. En primer lugar se ha planteado el caso del uso de segmentadores en regiones para mejorar las características locales. Para verificar la viabilidad y el éxito de esta combinación se ha desarrollado una propuesta específica, SP-SIFT, que se ha validado tanto a nivel experimental como a nivel de aplicación real, en concreto como técnica principal de algoritmos de seguimiento de objetos.
En segundo lugar, se ha planteado el caso de uso de características locales para mejorar los segmentadores en regiones. Para verificar la viabilidad y el éxito de esta combinación se ha desarrollado una propuesta específica, LF-SLIC, que se ha validado tanto a nivel experimental como a nivel de aplicación real, en concreto como técnica principal de un algoritmo de segmentación de lesiones pigmentadas de la piel.
Los resultados conceptuales han probado que las técnicas mejoran a nivel de capacidades.
Los resultados aplicados han probado que estas mejoras permiten el uso de estas técnicas en aplicaciones donde antes no tenían éxito. Con ello, se ha considerado la hipótesis validada, y por tanto exitosa la definición de un marco para el desarrollo de nuevas técnicas específicas con capacidades mejoradas.
En conclusión, la principal aportación de la tesis es el marco de combinación de técnicas, plasmada en sus dos propuestas específicas: características locales mejoradas con segmentadores y segmentadores mejorados con características locales, y en el éxito conseguido en sus aplicaciones.
A huge number of proposals have been developed in the area of computer vision for information extraction from images, and its further use. One of the most prevalent solutions are those known as local features. They detect points or areas of the image with certain characteristics of interest, and describe them using information from their (local) environment. The regions also stand out in the area, and especially this work has focused on the region segmentation algorithms, whose objective is to group the information of the image according to di erent criteria.
Despite the enormous potential of these techniques, and their proven success in a number of applications, their de nition implies a series of functional limitations that have prevented them from exporting their capabilities to other application areas. In this thesis, it is intended to promote the use of these tools in these applications, and therefore improve the results of the state of the art, by proposing a framework for developing new solutions.
Speci cally, the main hypothesis of the project is that the capacities of the local features and the region segmentation algorithms are complementary, and thus their combination, carried out in the right way, maximizes them while minimizing their limitations. The main objective, and therefore the main contribution of the thesis, is to validate this hypothesis by proposing a framework for developing new solutions combining local features and region segmentation algorithms, obtaining solutions with improved capabilities.
As the hypothesis is proposing to combine two techniques, the validation process has been carried out in two steps. First, the use case of region segmentation algorithms enhancing local features. In order to verify the viability and success of this combination, a speci c proposal, SP-SIFT, was been developed. This proposal was validated both experimentally and in a real application scenario, speci cally as the main technique of object tracking algorithms.
Second, the use case of enhancing region segmentation algorithm with local features. In order to verify the viability and success of this combination, a speci c proposal, LF-SLIC, was developed. The proposal was validated both experimentally and in a real application scenario, speci cally as the main technique of a pigmented skin lesions segmentation algorithm.
The conceptual results proved that the techniques improve at the capabilities level. The application results proved that these improvements allow the use of this techniques in applications where they were previously unsuccessful. Thus, the hypothesis can be considered validated, and therefore the de nition of a framework for the development of new techniques with improved capabilities can be considered successful.
In conclusion, the main contribution of the thesis is the framework for the combination of techniques, embodied in the two speci c proposals: enhanced local features with region segmentation algorithms, and region segmentation algorithms enhanced with local features; and in the success achieved in their applications.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados