Ir al contenido

Documat


Problems about Mean Curvature in R^{n+1}

  • Autores: Eddygledson Souza Gama
  • Directores de la Tesis: Francisco Martín Serrano (dir. tes.) Árbol académico, Luquésio Petrola De melo Jorge (codir. tes.) Árbol académico
  • Lectura: En la Universidad de Granada ( España ) en 2020
  • Idioma: inglés
  • ISBN: 9788413064802
  • Número de páginas: 137
  • Títulos paralelos:
    • Problemas sobre la curvatura media en R^{n+1}
  • Tribunal Calificador de la Tesis: Miguel Sánchez Caja (presid.) Árbol académico, Antonio Martínez López (secret.) Árbol académico, Alma Luisa Albujer Brotons (voc.) Árbol académico, Eva Miranda Galcerán (voc.) Árbol académico, Magdalena Caballero Campos (voc.) Árbol académico
  • Enlaces
    • Tesis en acceso abierto en: DIGIBUG
  • Resumen
    • This thesis is divided into three chapters. In the first chapter, it is done a brief introduction of the main tools necessary for the development of this work. In turn, in the second chapter it develops the Jenkins-Serrin theory for vertical and horizontal cases. Regarding the vertical case, it only proves the existence of the solution of Jenkins-Serrin problem for the type I, when M is rotationally symmetric and has non-positive sectional curvatures.

      However, with respect to the horizontal case, the existence and the uniqueness is proved in a general way, namely assuming that the base space M has a particular structure. The third and last chapter of this thesis is devoted to proving a result of the characterization of translating solitons in R^{n+1}. More precisely, it is proved that the unique examples C^{1}-asymptotic to two half-hyperplanes outside a cylinder are the hyperplanes parallel to e_{n+1} and the elements of the family associated with the tilted grim reaper cylinder in R^{n+1}.


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno