El incremento sostenible en la producción alimentaria para satisfacer las necesidades de una población mundial en aumento es un verdadero reto cuando tenemos en cuenta el impacto constante de plagas y enfermedades en los cultivos. Debido a las importantes pérdidas económicas que se producen, el uso de tratamientos químicos es demasiado alto; causando contaminación del medio ambiente y resistencia a distintos tratamientos. En este contexto, la comunidad agrícola divisa la aplicación de tratamientos más específicos para cada lugar, así como la validación automática con la conformidad legal. Sin embargo, la especificación de estos tratamientos se encuentra en regulaciones expresadas en lenguaje natural. Por este motivo, traducir regulaciones a una representación procesable por máquinas está tomando cada vez más importancia en la agricultura de precisión.
Actualmente, los requisitos para traducir las regulaciones en reglas formales están lejos de ser cumplidos; y con el rápido desarrollo de la ciencia agrícola, la verificación manual de la conformidad legal se torna inabordable.
En esta tesis, el objetivo es construir y evaluar un sistema de extracción de reglas para destilar de manera efectiva la información relevante de las regulaciones y transformar las reglas de lenguaje natural a un formato estructurado que pueda ser procesado por máquinas.
Para ello, hemos separado la extracción de reglas en dos pasos. El primero es construir una ontología del dominio; un modelo para describir los desórdenes que producen las enfermedades en los cultivos y sus tratamientos. El segundo paso es extraer información para poblar la ontología. Puesto que usamos técnicas de aprendizaje automático, implementamos la metodología MATTER para realizar el proceso de anotación de regulaciones.
Una vez creado el corpus, construimos un clasificador de categorías de reglas que discierne entre obligaciones y prohibiciones; y un sistema para la extracción de restricciones en reglas, que reconoce información relevante para retener el isomorfismo con la regulación original. Para estos componentes, empleamos, entre otra técnicas de aprendizaje profundo, redes neuronales convolucionales y “Long Short- Term Memory”. Además, utilizamos como baselines algoritmos más tradicionales como “support-vector machines” y “random forests”.
Como resultado, presentamos la ontología PCT-O, que ha sido alineada con otras ontologías como NCBI, PubChem, ChEBI y Wikipedia. El modelo puede ser utilizado para la identificación de desórdenes, el análisis de conflictos entre tratamientos y la comparación entre legislaciones de distintos países. Con respecto a los sistemas de extracción, evaluamos empíricamente el comportamiento con distintas métricas, pero la métrica F1 es utilizada para seleccionar los mejores sistemas. En el caso del clasificador de categorías de reglas, el mejor sistema obtiene un macro F1 de 92,77% y un F1 binario de 85,71%. Este sistema usa una red “bidirectional long short-term memory” con “word embeddings” como entrada. En relación al extractor de restricciones de reglas, el mejor sistema obtiene un micro F1 de 88,3%. Este extractor utiliza como entrada una combinación de “character embeddings” junto a “word embeddings” y una red neuronal “bidirectional long short-term memory”.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados