Ir al contenido

Documat


Enterprise information integration: on discovering links using genetic programming

  • Autores: Andrea Jesús Cimmino Arriaga
  • Directores de la Tesis: Rafael Corchuelo Gil (dir. tes.) Árbol académico
  • Lectura: En la Universidad de Sevilla ( España ) en 2019
  • Idioma: inglés
  • Número de páginas: 113
  • Tribunal Calificador de la Tesis: Arantza Illarramendi Echave (presid.) Árbol académico, José Miguel Toro Bonilla (secret.) Árbol académico, Maxime Lefrançois (voc.) Árbol académico, Emilio Santiago Corchado Rodríguez (voc.) Árbol académico, Raúl García Castro (voc.) Árbol académico
  • Enlaces
    • Tesis en acceso abierto en: Idus
  • Resumen
    • español

      Las empresas que desean establecer un precedente en el panorama actual tienden a recurrir al uso de datos para mejorar sus modelos de negocio. La mayor fuente de datos disponible es la Web, donde una gran cantidad es accesible aunque se encuentre fragmentada en islas de datos. La Web de los Datos tiene como objetivo dar una visión unificada de dichas islas, aunque el almacenamiento de los mismos siga siendo distribuido. Para ofrecer esta visión es necesario enlazar los recursos presentes en las islas de datos que hacen referencia a las mismas entidades del mundo real. Link discovery es el nombre atribuido a esta tarea, la cual se basa en generar reglas de enlazado que permiten establecer bajo qué circunstancias dos recursos deben ser enlazados. Se pueden encontrar diferentes propuestas en la literatura de link discovery, especialmente basadas en meta-heurísticas. Por desgracia comparar propuestas basadas en meta-heurísticas no es trivial. Por otro lado, se ha probado que estas reglas de enlazado no funcionan bien cuando los recursos que hacen referencia a dos entidades distintas del mundo real son muy parecidos, o por el contrario, cuando dos recursos muy distintos hacen referencia a la misma entidad. En esta tesis presentamos varias propuestas. Por un lado, Eva4LD es un framework genérico para desarrollar propuestas de link discovery basadas en programación genética, que es un tipo de meta-heurística. Gracias a nuestro framework, hemos podido implementar distintas propuestas de la literatura y comprar justamente sus resultados. Por otro lado, en la tesis presentamos Teide, una propuesta que recibiendo varias reglas de enlazado las aplica de tal modo que mejora significativamente la precisión de las mismas sin reducir significativamente su cobertura. Por desgracia, Teide es computacionalmente costoso debido a que no aprende reglas. Debido a este motivo, presentamos Sorbas que aprende un tipo de reglas de enlazado que denominamos reglas de enlazado con contexto.

    • English

      Both established and emergent business rely heavily on data, chiefly those that wish to become game changers. The current biggest source of data is the Web, where there is a large amount of sparse data. The Web of Data aims at providing a unified view of these islands of data. To realise this vision, it is required that the resources in different data sources that refer to the same real-world entities must be linked, which is they key factor for such a unified view. Link discovery is a trending task that aims at finding link rules that specify whether these links must be established or not. Currently there are many proposals in the literature to produce these links, especially based on meta-heuristics. Unfortunately, creating proposals based on meta-heuristics is not a trivial task, which has led to a lack of comparison between some well-established proposals. On the other hand, it has been proved that these link rules fall short in cases in which resources that refer to different real-world entities are very similar or vice versa. In this dissertation, we introduce several proposals to address the previous lacks in the literature. On the one hand we, introduce Eva4LD, which is a generic framework to build genetic programming proposals for link discovery; which are a kind of meta-heuristics proposals. Furthermore, our framework allows to implement many proposals in the literature and compare their results fairly. On the other hand, we introduce Teide, which applies effectively the link rules increasing significantly their precision without dropping their recall significantly. Unfortunately, Teide does not learn link rules, and applying all the provided link rules is computationally expensive. Due to this reason we introduce Sorbas, which learns what we call contextual link rules.


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno