Ir al contenido

Documat


Hermite-padé approximation and location of singularities of systems of analytic functions

  • Autores: Yanely Zaldivar Gerpe
  • Directores de la Tesis: Guillermo Tomás López Lagomasino (dir. tes.) Árbol académico
  • Lectura: En la Universidad Carlos III de Madrid ( España ) en 2019
  • Idioma: español
  • Tribunal Calificador de la Tesis: Francisco Marcellán Español (presid.) Árbol académico, Bernardo de la Calle Ysern (secret.) Árbol académico, Manuel Bello Hernández (voc.) Árbol académico
  • Enlaces
  • Resumen
    • We consider row sequences of (type II) Hermite-Padé approximations with common denominator associated with a vector f of formal power expansions about the origin. In terms of the asymptotic behavior of the sequence of common denominators, we describe some analytic properties of f and restate some conjectures corresponding to questions once posed by A. A. Gonchar for row sequences of Padé approximants. We obtain extensions of the Poincaré and Perron theorems for higher order recurrence relations and apply them to obtain an inverse type theorem for row sequences of (type II) Hermite-Padé approximation of a vector of formal power series. We also give necessary and sufficient conditions for the convergence with geometric rate of the common denominators of multipoint Hermite-Padé approximants.


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno