Carlos Eduardo Melo Martínez
ANÁLISIS GEOESTADÍSTICO ESPACIO TIEMPO BASADO EN DISTANCIAS Y SPLINES CON APLICACIONES Se propusieron innovaciones en la predicción espacio y espacio-temporal, a partir de métodos geoestadísticos kriging y de funciones de base radial (RBF), considerando métodos basados en distancias. En este sentido, por medio de las distancias entre las variables explicativas, incorporadas específicamente en la regresión basada en distancias, se propusieron modificaciones en: el método kriging universal y en la interpolación con splines espacial y espacio-temporal usando las RBF.
Para el método propuesto kriging universal basado en distancias (DBUK), se realizó un estudio de simulación que permitió comparar la capacidad predictiva del método tradicional kriging universal con respecto a kriging universal basado en distancias; mientras que en la interpolación con Splines espacial y espacio-temporal, los estudios de simulación permitieron comparar el funcionamiento de las funciones de base radial espaciales y espaciotemporales, considerando en la tendencia las coordenadas principales generadas a partir de las variables explicativas mixtas mediante el uso del método basado en distancias.
El método propuesto DBUK muestra, tanto en las simulaciones como en las aplicaciones, ventajas en la reducción del error con respecto al método clásico de krigeado universal. Esta reducción de los errores se asocia a una mejor modelización de la tendencia y a un menor error en el ajuste y modelado del variograma, al considerar las coordenadas principales obtenidas a partir de las variables explicativas mixtas. Entre muchas otras posibles causas, el error es generado por omisión de variables y por considerar formas funcionales incorrectas.
El estudio de simulación muestra que el método propuesto DBUK es mejor que el método de krigeado universal tradicional ya que se encontró una notoria reducción del error, asociada a un RMSPE más pequeño, esta reducción en general fue superior al 10%. El método DBUK podrá producir una mejor estimación de la variable regionalizada si el número de coordenadas principales se incrementa. Esto es posible, incluyendo las coordenadas principales más significativas tanto en modelo de tendencia como en el variograma; se presenta una aplicación que ilustra este hecho.
Los métodos propuestos interpolación espacial basada en distancias con RBF (DBSIRBF) en espacio e interpolación espacio-temporal basada en distancias con RBF (DBSTIRBF) analizados mediante una estructura de krigeado considerando en la tendencia las coordenadas principales, presentan un buen funcionamiento al trabajar con vecindarios grandes, indicando en general que se tendrá un menor error asociado a un RMSPE más pequeño En diversos estudios, la detección de variabilidad entre zonas es una tarea muy difícil, y por lo cual los métodos propuestos DBUK, DBSIRBF y DBSTIRBF son útiles de acuerdo a los resultados obtenidos en la tesis, ya que aprovechan al máximo la información existente asociada a las variables explicativas. Aunque la correlación de las variables explicativas puede ser baja con respecto a la variable respuesta, el punto clave en los métodos propuestos es la correlación entre las coordenadas principales (construida con las variables explicativas) y la variable respuesta.
Los métodos propuestos se aplicaron a datos agronómicos (Concentración de calcio medido a una profundidad de 0-20 cm de Brasil) y climatológicos (Temperaturas medias diarias de la Tierra en Croacia en el año 2008). Los resultados de validación cruzada ¿leave-one-out¿ mostraron un buen rendimiento de los predictores propuestos, lo cual indica que se pueden utilizar como métodos alternos y validos a los tradicionales para el modelado de variables correlacionadas espacialmente y espacio-temporalmente, considerando siempre covariables en la remoción de la tendencia.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados