Al igual que otros campos que dependen en gran medida de las funcionalidades ofrecidas por las tecnologías de la información y las comunicaciones (IT), la biomedicina y la salud necesitan cada vez más la implantación de normas y mecanismos ampliamente aceptados para el intercambio de datos, información y conocimiento. Dicha necesidad de compatibilidad e interoperabilidad va más allá de las cuestiones sintácticas y estructurales, pues la interoperabilidad semántica es también requerida. La interoperabilidad a nivel semántico es esencial para el soporte computarizado de alertas, flujos de trabajo y de la medicina basada en evidencia cuando contamos con la presencia de sistemas heterogéneos de Historia Clínica Electrónica (EHR).
El modelo de arquetipos clínicos respaldado por el estándar CEN/ISO EN13606 y la fundación openEHR ofrece un mecanismo para expresar las estructuras de datos clínicos de manera compartida e interoperable. El modelo ha ido ganando aceptación en los últimos años por su capacidad para definir conceptos clínicos basados en un Modelo de Referencia común. Dicha separación a dos capas permite conservar la heterogeneidad de las implementaciones de almacenamiento a bajo nivel, presentes en los diferentes sistemas de EHR. Sin embargo, los lenguajes de arquetipos no soportan la representación de reglas clínicas ni el mapeo a ontologías formales, ambos elementos fundamentales para alcanzar la interoperabilidad semántica completa pues permiten llevar a cabo el razonamiento y la inferencia a partir del conocimiento clínico existente.
Paralelamente, es reconocido el hecho de que la World Wide Web presenta requisitos análogos a los descritos anteriormente, lo cual ha fomentado el desarrollo de la Web Semántica. El progreso alcanzado en este terreno, con respecto a la representación del conocimiento y al razonamiento sobre el mismo, es combinado en esta tesis con los modelos de EHR con el objetivo de mejorar el enfoque de los arquetipos clínicos y ofrecer funcionalidades que se corresponden con nivel más alto de interoperabilidad semántica.
Concretamente, la investigación que se describe a continuación presenta y evalúa un enfoque para traducir automáticamente las definiciones expresadas en el lenguaje de definición de arquetipos de openEHR (ADL) a una representación formal basada en lenguajes de ontologías. El método se implementa en la plataforma ArchOnt, que también es descrita. A continuación se estudia la integración de dichas representaciones formales con reglas clínicas, ofreciéndose un enfoque para reutilizar el razonamiento con instancias concretas de datos clínicos. Es importante ver como el acto de compartir el conocimiento clínico expresado a través de reglas es coherente con la filosofía de intercambio abierto fomentada por los arquetipos, a la vez que se extiende la reutilización a proposiciones de conocimiento declarativo como las utilizadas en las guías de práctica clínica. De esta manera, la tesis describe una técnica de mapeo de arquetipos a ontologías, para luego asociar reglas clínicas a la representación resultante. La traducción automática también permite la conexión formal de los elementos especificados en los arquetipos con conceptos clínicos equivalentes provenientes de otras fuentes como son las terminologías clínicas. Dichos enlaces fomentan la reutilización del conocimiento clínico ya representado, así como el razonamiento y la navegación a través de distintas ontologías clínicas.
Otra contribución significativa de la tesis es la aplicación del enfoque mencionado en dos proyectos de investigación y desarrollo clínico, llevados a cabo en combinación con hospitales universitarios de Madrid. En la explicación se incluyen ejemplos de las aplicaciones más representativas del enfoque como es el caso del desarrollo de sistemas de alertas orientados a mejorar la seguridad del paciente. No obstante, la traducción automática de arquetipos clínicos a lenguajes de ontologías constituye una base común para la implementación de una amplia gama de actividades semánticas, razonamiento y validación, evitándose así la necesidad de aplicar distintos enfoques ad-hoc directamente sobre los arquetipos para poder satisfacer las condiciones de cada contexto.
Like many other fields that heavily rely on the capabilities of information and communication technologies, healthcare and biomedical environments are rapidly increasing the demand for widely accepted agreements on data, information and knowledge exchange. Such needs for compatibility or interoperability go beyond syntactical and structural issues as semantic interoperability is also required. Semantic interoperability is essential to facilitate the computerized support for alerts, workflow management and evidence-based healthcare across heterogeneous Electronic Health Record (EHR) systems.
The model of clinical archetypes supported by the CEN/ISO EN13606 standard and the openEHR foundation provides a mechanism to express data structures in a shared and interoperable way. It has acquired considerable acceptance in the last years by allowing the definition of clinical concepts based on a common Reference Model while low level storage implementation can keep its heterogeneity across EHR systems. However, archetype languages do not provide direct support neither for clinical rules nor mappings to formal ontologies, which are both key elements of full semantic interoperability as they allow exploiting reasoning on clinical knowledge.
It has been acknowledged that the World Wide Web demands analogous capabilities to those mentioned above, leading to the development of the Semantic Web extension. The progress made in that field, regarding reasoning and knowledge representation, is combined in this thesis with EHR models in order to enhance the archetype approach and to support features that correspond to a richer level of semantic interoperability.
Concretely, this research presents and evaluates an approach to translate definitions expressed in openEHR Archetype Definition Language (ADL) to a formal representation using ontology languages. The approach is implemented in the ArchOnt framework, which is also described. The integration of those formal representations with clinical rules is then studied, providing an approach to reuse reasoning on concrete instances of clinical data. Sharing the knowledge expressed in the form of rules is coherent with the philosophy of open sharing underlying archetypes, and it also extends reuse to propositions of declarative knowledge as those encoded for example in clinical guidelines. Thus, this thesis describes the techniques to map archetypes to formal ontologies and how rules can be attached to the resulting representation. In addition, the translation allows specifying logical bindings to equivalent clinical concepts from other knowledge sources. Such bindings encourage reuse as well as ontology reasoning and navigability across different ontologies.
Another significant contribution of the thesis is the application of the presented approach as part of two research projects in collaboration with teaching hospitals in Madrid. Examples taken from those cases, such as the development of alerting systems aimed at improving patient safety, are here explained. Besides the direct applications described, the automatic translation of archetypes to an ontology language fosters a wide range of semantic and reasoning activities to be designed and implemented on top of a common representation instead of taking an ad-hoc approach.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados