Ir al contenido

Documat


Geometría de recubrimientos: dimensión topológica y estructuras coarse C₀

  • Autores: Jesús Pascual Moreno Damas
  • Directores de la Tesis: Manuel Alonso Morón (dir. tes.) Árbol académico
  • Lectura: En la Universidad Complutense de Madrid ( España ) en 2012
  • Idioma: español
  • Tribunal Calificador de la Tesis: José Manuel Rodríguez Sanjurjo (presid.) Árbol académico, Francisco Romero Ruiz del Portal (secret.) Árbol académico, Jaime J. Sánchez Gabites (voc.) Árbol académico, Eduardo Cuchillo Ibáñez (voc.) Árbol académico, Álvaro Martínez Pérez (voc.) Árbol académico
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Este trabajo consta de dos partes en apariencia independientes: el estudio de la dimensión topológica a través de las ``descomposiciones por cortes'' y un isomorfismo de categorías entre compactos metrizables y estructuras coarse C_0. A pesar de que los resultados más relevantes de esta memoria están en la primera parte, el proyecto original de la tesis es la segunda parte. De hecho, la primera surgió al resolver un problema de la segunda.

      Parte I: Dimensión topológica ------------------------ ------------- El objetivo inicial de esta parte de la tesis es demostrar un problema en teoría de la dimensión topológica que permite obtener resultados de la segunda parte de la tesis relacionados con la dualidad entre dimensión asintótica y topol ógica y los recubrimientos canónicos de Dugundji. No obstante, las herramientas e ideas desarrolladas para probarlo han resultado ser interesantes en sí mismas, de modo que esta parte de la tesis se ha centrado en su estudio. El problema original es:

      (*) Sea X compacto métrico con dimensión menor o igual que n. ¿Existe una sucesión de recubrimientos abiertos {a_i} con mesh(a_i) tendiendo a 0 y mult(a_i,alpha_(i 1)) es menor o igual que n 2 para todo i? Donde por mesh(a) entendemos el supremo de los diámetros de los elementos de a y donde mult(a_1,¿,a_r) es una multiplicidad mayor o igual que la multiplicidad de la unión de a_1,¿,a_r que coincide con ésta cuando los recubrimientos son disjuntos dos a dos y cuando no lo son se comporta co mo si lo fueran.

      Para resolver el problema, se han definidos las descomposiciones por cortes, un concepto topológico natural en la teoría de la dimensión que ha demostrado ser muy útil para la construcción de recubrimientos y sucesiones de recubrimi entos especiales, por ejemplo pidiendo que cumpla la propiedad (*) o que sus nervios cumplan propiedades geométricas.

      Esta parte de la tesis se ha centrado en desarrollar ``la teoría de las descomposiciones por cortes'' y resolver problemas dimensi onales relacionados con ellas, como los recién citados o la propuesta de nuevos modos de codificar la dimensión topológica.

      Groso modo, una descomposicíon por cortes de tamaño n es una colección de n cerrados encajados y una colección finita de abi ertos relativos de cada cerrado, con ciertas propiedades. La descomposición por cortes es fina cuando los abiertos lo son. Si X es metrizable, las descomosiciones por cortes son muy fexibles y pueden cumplir muchas propiedades.

      Las descomposiciones


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno