Ir al contenido

Documat


Ontology based semantic clustering

  • Autores: Montserrat Batet Sanromà Árbol académico
  • Directores de la Tesis: Aïda Valls Mateu (dir. tes.) Árbol académico, Karina Gibert Oliveras (dir. tes.) Árbol académico
  • Lectura: En la Universitat Rovira i Virgili ( España ) en 2011
  • Idioma: español
  • Tribunal Calificador de la Tesis: Salvatore Greco (presid.) Árbol académico, Antonio Moreno Ribas (secret.) Árbol académico, Salvador Antón Clavé (voc.) Árbol académico, Luis Martínez López (voc.) Árbol académico, Miquel Sànchez i Marrè (voc.) Árbol académico
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Clustering algorithms have focused on the management of numerical and categorical data. However, in the last years, textual information has grown in importance. Proper processing of this kind of information within data mining methods requires an interpretation of their meaning at a semantic level. In this work, a clustering method aimed to interpret, in an integrated manner, numerical, categorical and textual data is presented. Textual data will be interpreted by means of semantic similarity ¿ [+]measures. These measures calculate the alikeness between words by exploiting one or several knowledge sources. In this work we also propose two new ways of compute semantic similarity based on 1) the exploitation of the taxonomical knowledge available on one or several ontologies and 2) the estimation of the information distribution of terms in the Web. Results show that a proper interpretation of textual data at a semantic level improves clustering results and eases the interpretability of the classifications [-


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno