Ir al contenido

Documat


Diabetic Macular Edema characterization by automatic analysis of Optical Coherence Tomography

  • Autores: Joaquim de Moura
  • Directores de la Tesis: Marcos Ortega Hortas (dir. tes.) Árbol académico, Jorge Novo Buján (codir. tes.) Árbol académico
  • Lectura: En la Universidade da Coruña ( España ) en 2019
  • Idioma: inglés
  • Número de páginas: 319
  • Tribunal Calificador de la Tesis: José Santos Reyes (presid.) Árbol académico, Enrique J. Carmona Suárez (secret.) Árbol académico, Nery García- Porta (voc.) Árbol académico
  • Enlaces
    • Tesis en acceso abierto en: RUC
  • Resumen
    • español

      El Edema Macular Diabético (EMD) es una de las complicaciones más importantes de la diabetes y una de las principales causas de ceguera prevenible en los países desarrollados. Entre las diferentes modalidades de imagen, la Tomografía de Coherencia Óptica (TCO) es una técnica de imagen no invasiva, transversal y de alta resolución que se usa comúnmente para el análisis e interpretación de múltiples estructuras retinianas y trastornos oculares. De esta manera, el desarrollo de los sistemas de Diagnóstico Asistido por Ordenador (DAO) se ha vuelto relevante en los últimos años, facilitando y simplificando el trabajo de los especialistas clínicos en muchos procesos diagnósticos relevantes, reemplazando procedimientos manuales que son tediosos y requieren mucho tiempo. Esta tesis propone una metodología completa para la identificación y caracterización de EMDs utilizando imágenes TCO. Para ello, el sistema desarrollado combina y explota diferentes conocimientos clínicos con estrategias de procesamiento de imágenes y aprendizaje automático. Este sistema automático es capaz de identificar y caracterizar las principales estructuras retinianas y diferentes afecciones patológicas asociadas con el EMD, siguiendo la clasificación clínica de referencia en el campo oftalmológico. A pesar de la complejidad de esta relevante patología ocular, el sistema propuesto logró resultados satisfactorios, demostrando ser lo sufi cientemente robusto como para ser usado en la práctica clínica diaria, ayudando a los médicos a producir diagnósticos más precisos y tratamientos más adecuados.

    • English

      Diabetic Macular Edema (DME) is one of the most important complications of diabetes and a leading cause of preventable blindness in the developed countries. Among the di erent image modalities, Optical Coherence Tomography (OCT) is a non-invasive, cross-sectional and high-resolution imaging technique that is commonly used for the analysis and interpretation of many retinal structures and ocular disorders. In this way, the development of Computer-Aided Diagnosis (CAD) systems has become relevant over the recent years, facilitating and simplifying the work of the clinical specialists in many relevant diagnostic processes, replacing manual procedures that are tedious and highly time-consuming. This thesis proposes a complete methodology for the identi cation and characterization of DMEs using OCT images. To do so, the system combines and exploits di erent clinical knowledge with image processing and machine learning strategies. This automatic system is able to identify and characterize the main retinal structures and several pathological conditions that are associated with the DME disease, following the clinical classi cation of reference in the ophthalmological eld. Despite the complexity and heterogeneity of this relevant ocular pathology, the proposed system achieved satisfactory results, proving to be robust enough to be used in the daily clinical practice, helping the clinicians to produce a more accurate diagnosis and indicate adequate treatments

    • galego

      O Edema Macular Diabético ( EMD) é unha das complicacións máis importantes da diabetes e unha das principais causas de cegueira prevenible nos países desenvoltos. Entre as diferentes modalidades de imaxe, a Tomografía de Coherencia Óptica ( TCO) é unha técnica de imaxe non invasiva, transversal e de alta resolución que se usa comunmente para a análise e interpretación de múltiples estruturas retinianas e trastornos oculares. Desta maneira, o desenvolvemento dos sistemas de Diagnóstico Asistido por Computador ( DAO) volveuse relevante nos últimos anos, facilitando e simplificando o traballo dos especialistas clínicos en moitos procesos diagnósticos relevantes, substituíndo procedementos manuais que son tediosos e requiren moito tempo. Esta tese propón unha metodoloxía completa para a identificación e caracterización de EMDs utilizando imaxes TCO. Para iso, o sistema desenvolto combina e explota diferentes coñecementos clínicos con estratexias de procesamento de imaxes e aprendizaxe automático. Este sistema automático é capaz de identificar e caracterizar as principais estruturas retinianas e diferentes afeccións patolóxicas asociadas co EMD, seguindo a clasificación clínica de referencia no campo oftalmolóxico. A pesar da complexidade desta relevante patoloxía ocular, o sistema proposto logrou resultados satisfactorios, demostrando ser o sufi cientemente robusto como para ser usado na práctica clínica diaria, axudando aos médicos para producir diagnósticos máis precisos e tratamentos máis adecuados.


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno