Ir al contenido

Documat


Número de ramificación y percolación de un pseudogrupo

  • Autores: María Pérez Fernández de Córdoba
  • Directores de la Tesis: Fernando Alcalde Cuesta (dir. tes.) Árbol académico
  • Lectura: En la Universidade de Santiago de Compostela ( España ) en 2012
  • Idioma: español
  • Tribunal Calificador de la Tesis: Felipe Cano Torres (presid.) Árbol académico, Antonio Gómez Tato (secret.) Árbol académico, Damien Gaboriau (voc.) Árbol académico, Eduardo Liz Marzán (voc.) Árbol académico, Bertrand Deroin (voc.) Árbol académico
  • Enlaces
    • Tesis en acceso abierto en: MINERVA
  • Resumen
    • The branching number of a rooted tree represents the average number of branches per vertex. This number is strongly related with Bernoulli percolation process, which involves removing edges at random on the tree and whose goal is to study the nature of the resulting clusters. We extend these notions to any measurable pseudogroup of finite type on a probability space. We prove that if the branching number is equal to 1 then the pseudogroup is amenable. In fact, when the measure is harmonic, the pseudogroup is Liouville. Regarding Bernoulli percolation, we remove edges at random on the orbits and we define a critical percolation. We study the influence of the number of ends of the orbits on the critical percolation. Finally, we define the percolation relative to a Borel set on group actions on a probability space, keeping the edges whose endpoints belong to the Borel set and removing the others. We use again the number of ends in order to achieve information about the clusters.


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno