Ir al contenido

Documat


Operadores multilineales absolutamente sumantes

  • Autores: David Pérez García Árbol académico
  • Directores de la Tesis: Fernando Bombal Gordón (dir. tes.) Árbol académico, Ignacio Villanueva Díez (dir. tes.) Árbol académico
  • Lectura: En la Universidad Complutense de Madrid ( España ) en 2004
  • Idioma: español
  • Tribunal Calificador de la Tesis: José María Martínez Ansemil (presid.) Árbol académico, Jesús Angel Jaramillo Aguado (secret.) Árbol académico, Joseph Diestel (voc.) Árbol académico, Joaquín Gutiérrez del Álamo Gil (voc.) Árbol académico, Manuel Maestre Vera (voc.) Árbol académico
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • La presente Tesis está dedicada al estudio de distintas clases de operadores multilineales absolutamente sumantes entre espacios de Banach. En primer lugar se prsenta una panorámica sobre los distintos tipos de operadores absolutamente sumantes que han sido considerados en la literatura, y se describen los resultados más relevantes de la teoría. En este contexto se obtienen algunos resultados nuevos, de los cuales destacaremos los que se refieren a las propiedades de incondicionalidad local, así como la extensión multilineal del Teorema de Grothendieck. De este último resultado se obtienen interesantes aplicaciones a las clases de Schatten y al caso no-conmutativo (es decir, para C*-álgebras). A continuación se introduce la definición de un nuevo tipo de operadores multilineales absolutamente sumantes, los llamados "múltiples sumantes". Se demuestra que esta clase de operadores posee buenas propiedades estructurales, sobre todo las propiedades de ideal, y se estudian detenidamente sus propiedades de inclusión. También se considera su estabilidad con respecto a la extensión de Aron-Berner de operadores multilineales. Más adelante se obtienen nuevas versiones del teorema de Grothendieck en este contexto, así como algunas aplicaciones de las mismas. Finalmente, se realiza un estudio de los operadores múltiples-sumantes en los espacios C(K), incluyendo su representación a través de polimedidas y su relación con los operadores integrales.


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno