Ir al contenido

Documat


Aspectos cualitativos y numéricos de la ecuación hipergeométrica

  • Autores: Alfredo Deaño Cabrera
  • Directores de la Tesis: José Javier Segura Sala (dir. tes.) Árbol académico
  • Lectura: En la Universidad Carlos III de Madrid ( España ) en 2006
  • Idioma: español
  • Tribunal Calificador de la Tesis: Francisco Marcellán Español (presid.) Árbol académico, Jorge Sánchez Ruiz (secret.) Árbol académico, N. M. Temme (voc.) Árbol académico, Jesús Sánchez-Dehesa Moreno-Cid (voc.) Árbol académico, Andrei Martínez Finkelshtein (voc.) Árbol académico
  • Enlaces
  • Resumen
    • En esta memoria exponemos el trabajo de investigación realizado sobre propiedades analíticas y numéricas de funciones que son solución de las ecuaciones hipergeométricas de Gauss y Kummer, Los problemas que analizamos en esta memoria son los siguientes:

      1. Estudio analítico de los ceros reales de las funciones hipergeométricas, en concreto propiedades de tipo Sturm, es decir, cotas de distancias entre ceros consecutivos y monotonía de dichas distancias. Se obtienen propiedades globales de los ceros de forma sistemática, incluyendo como casos particulares algunos presentes en la literatura y generalizaciones de los mismos.

      2. Propiedades numéricas de las relaciones de recurrencia a tres términos que satisfacen las funciones hipergeométricas de Gauss y Kummer, así como de las fracciones continuas asociadas a dichas recurrencias. Se presentan los conceptos de solución pseudomínima de una recurrencia y de pseudoconvergencia de la fracción continua asociada.

      Finalmente, se analizan métodos de punto fijo para el cálculo numérico de ceros reales de funciones hipergeométricas. Estos métodos se aplican a cocientes de funciones contiguas, y se utilizan para construir un paquete de rutinas en el programa simbólico-numérico Maple. El análisis computacional del algoritmo incluye la comparación de fracciones continuas y subrutinas de Maple para la evaluación de los cocientes de funciones hipergeométricas


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno