En esta Tesis nos centramos en el análisis numérico del método de descomposición de la viscosidad y del método de proyección incremental, aplicados a NS y EP posteriormente. Por otro lado, en cuanto al método de proyección no incremental (sin corrección de presión), ya ha sido profundamente estudiado para el caso de ... Navier Stokes por otros autores, en [7], [29] y [30], de dos maneras distintas: la primera usando una formulación mixta velocidad presión y haciendo uso de la condición inf-sup para los espacios discretos aproximantes y la segunda, utilizando la formulación de la presión segregada sin imponer la condición inf-sup, si bien, en ambos casos no se consiguen estimaciones �optimas para el error de la presión, debido a que aunque el método no necesite una presión inicial para conseguir estabilidad y orden óptimo en velocidad, las condiciones de contorno artificiales para la presión generan una capa límite, que justifica la pérdida de aproximación para la presión del método. La extensión del estudio realizado en la memoria para NS al caso de EP no es en absoluto directa, debido a las dificultades añadidas que nos encontramos en las EP, principalmente la pérdida de regularidad de la velocidad vertical y la integración global en vertical. De hecho, los resultados obtenidos para NS con el método de descomposición de la viscosidad no se pueden obtener para EP
© 2008-2024 Fundación Dialnet · Todos los derechos reservados