Juan Daniel Valor Miró
Nowadays, the technology enhanced learning area has experienced a strong growth with many new learning approaches like blended learning, flip teaching, massive open online courses, and open educational resources to complement face-to-face lectures. Specifically, video lectures are fast becoming an everyday educational resource in higher education for all of these new learning approaches, and they are being incorporated into existing university curricula around the world.
Transcriptions and translations can improve the utility of these audiovisual assets, but rarely are present due to a lack of cost-effective solutions to do so. Lecture searchability, accessibility to people with impairments, translatability for foreign students, plagiarism detection, content recommendation, note-taking, and discovery of content-related videos are examples of advantages of the presence of transcriptions.
For this reason, the aim of this thesis is to test in real-life case studies ways to obtain multilingual captions for video lectures in a cost-effective way by using state-of-the-art automatic speech recognition and machine translation techniques. Also, we explore interaction protocols to review these automatic transcriptions and translations, because unfortunately automatic subtitles are not error-free. In addition, we take a step further into multilingualism by extending our findings and evaluation to several languages. Finally, the outcomes of this thesis have been applied to thousands of video lectures in European universities and institutions.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados