Josué Feliu Pérez
The recent multicore era and the incoming manycore/manythread era generate a lot of challenges for computer scientists going from productive parallel programming, over network congestion avoidance and intelligent power management, to circuit design issues. The ultimate goal is to squeeze out as much performance as possible while limiting power and energy consumption and guaranteeing a reliable execution. The increasing number of hardware contexts of current and future systems makes the scheduler an important component to achieve this goal, as there is often a combinatorial amount of different ways to schedule the distinct threads or applications, each with a different performance due to the inter-application interference. Picking an optimal schedule can result in substantial performance gains.
This thesis deals with inter-application interference, covering the problems this fact causes on performance and fairness on actual machines. The study starts with single-threaded multicore processors (Intel Xeon X3320), follows with simultaneous multithreading (SMT) multicores supporting up to two threads per core (Intel Xeon E5645), and goes to the most highly threaded per-core processor that has ever been built (IBM POWER8). The dissertation analyzes the main contention points of each experimental platform and proposes scheduling algorithms that tackle the interference arising at each contention point to improve the system throughput and fairness.
First we analyze contention through the memory hierarchy of current multicore processors. The performed studies reveal high performance degradation due to contention on main memory and any shared cache the processors implement. To mitigate such contention, we propose different bandwidth-aware scheduling algorithms with the key idea of balancing the memory accesses through the workload execution time and the cache requests among the different caches at each cache level.
The high interference that different applications suffer when running simultaneously on the same SMT core, however, does not only affect performance, but can also compromise system fairness. In this dissertation, we also analyze fairness in current SMT multicores. To improve system fairness, we design progress-aware scheduling algorithms that estimate, at runtime, how the processes progress, which allows to improve system fairness by prioritizing the processes with lower accumulated progress.
Finally, this dissertation tackles inter-application contention in the IBM POWER8 system with a symbiotic scheduler that addresses overall SMT interference. The symbiotic scheduler uses an SMT interference model, based on CPI stacks, that estimates the slowdown of any combination of applications if they are scheduled on the same SMT core. The number of possible schedules, however, grows too fast with the number of applications and makes unfeasible to explore all possible combinations. To overcome this issue, the symbiotic scheduler models the scheduling problem as a graph problem, which allows finding the optimal schedule in reasonable time.
In summary, this thesis addresses contention in the shared resources of the memory hierarchy and SMT cores of multicore processors. We identify the main contention points of three systems with different architectures and propose scheduling algorithms to tackle contention at these points. The evaluation on the real systems shows the benefits of the proposed algorithms. The symbiotic scheduler improves system throughput by 6.7\% over Linux. Regarding fairness, the proposed progress-aware scheduler reduces Linux unfairness to a third. Besides, since the proposed algorithm are completely software-based, they could be incorporated as scheduling policies in Linux and used in small-scale servers to achieve the mentioned benefits.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados