Ir al contenido

Documat


Resumen de Management of generic and multi-platform workflows for exploiting heterogeneous environments on e-Science.

Abel Antonio Carrión Collado

  • Scientific Workflows (SWFs) are widely used to model applications in e-Science. In this programming model, scientific applications are described as a set of tasks that have dependencies among them. During the last decades, the execution of scientific workflows has been successfully performed in the available computing infrastructures (supercomputers, clusters and grids) using software programs called Workflow Management Systems (WMSs), which orchestrate the workload on top of these computing infrastructures. However, because each computing infrastructure has its own architecture and each scientific applications exploits efficiently one of these infrastructures, it is necessary to organize the way in which they are executed.

    WMSs need to get the most out of all the available computing and storage resources. Traditionally, scientific workflow applications have been extensively deployed in high-performance computing infrastructures (such as supercomputers and clusters) and grids. But, in the last years, the advent of cloud computing infrastructures has opened the door of using on-demand infrastructures to complement or even replace local infrastructures. However, new issues have arisen, such as the integration of hybrid resources or the compromise between infrastructure reutilization and elasticity, everything on the basis of cost-efficiency.

    The main contribution of this thesis is an ad-hoc solution for managing workflows exploiting the capabilities of cloud computing orchestrators to deploy resources on demand according to the workload and to combine heterogeneous cloud providers (such as on-premise clouds and public clouds) and traditional infrastructures (supercomputers and clusters) to minimize costs and response time. The thesis does not propose yet another WMS, but demonstrates the benefits of the integration of cloud orchestration when running complex workflows. The thesis shows several configuration experiments and multiple heterogeneous backends from a realistic comparative genomics workflow called Orthosearch, to migrate memory-intensive workload to public infrastructures while keeping other blocks of the experiment running locally. The running time and cost of the experiments is computed and best practices are suggested.


Fundación Dialnet

Mi Documat