Ir al contenido

Documat


Gröbner Bases under Composition over Fields with Valuations

  • Autores: Mahmoud Alsersawi
  • Directores de la Tesis: Manuel Ladra González (dir. tes.) Árbol académico
  • Lectura: En la Universidade de Santiago de Compostela ( España ) en 2017
  • Idioma: inglés
  • Tribunal Calificador de la Tesis: José Manuel Casas Mirás (presid.) Árbol académico, Cristina Costoya (secret.) Árbol académico, Luis Felipe Tabera Alonso (voc.) Árbol académico
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • En el presente trabajo usamos la teoría de las bases Gröbner sobre un anillo de polinomios con coeficientes en un cuerpo con una valoración respecto a un par (w, <), donde < es un orden monomial fijo y w es un vector peso fijo.

      Esta teoría puede considerarse como una generalización de la teoría de bases de Gröbner homogéneas.

      Se estudia la existencia de dicha base de Gröbner y algunas propiedades, así como algunas relaciones entre esta teoría y otras conocidas. También se da un criterio para decidir si un conjunto finito es una base de Gröbner respecto al par (w, <) y un algoritmo de construcción de una base de Gröbner.

      Además investigamos el comportamiento de bases de Gröbner bajo composición de polinomios. La composición de polinomios es la operación de reemplazar las variables de un polinomio por otros polinomios. En concreto, estudiamos en que condiciones una lista de polinomios \Theta conmuta con una base de Gröbner G sobre un anillo de polinomios con coeficientes en un cuerpo con una valoración respecto al par (w, <) . Es decir, respondemos a la cuestión de cuándo G\circ\Theta es una base de Gröbner respecto al par (w, <).


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno