La rápida adopción de Internet y de las tecnologías web ha creado una oportunidad para hacer música colaborativa mediante el intercambio de información en línea. Sin embargo, las aplicaciones actuales para hacer música en línea no aprovechan el potencial de la información compartida. El objetivo de esta tesis es proporcionar y evaluar algoritmos y representaciones para interactuar con grandes bases de datos de audio que faciliten la creación de música por parte de comunidades virtuales. Este trabajo ha sido desarrollado en el contexto de Freesound, una base de datos de grabaciones sonoras compartidos bajo licencia Creative Commons (CC) a gran escala, impulsada por la comunidad de usuarios. La diversidad de sonidos disponibles a través de este tipo de plataforma no tiene precedentes. Al mismo tiempo, la naturaleza desestructurada de los procesos impulsados por comunidades plantea nuevos retos para la indexación y recuperación de información en apoyo de la creatividad musical. En esta tesis proponemos y evaluamos algoritmos y representaciones para tratar con los principales elementos requeridos por las aplicaciones de creación musical en línea basadas en bases de datos de audio a gran escala: archivos de sonido, incluyendo representaciones temporales y agregadas, taxonomías para buscar sonidos, representaciones musicales y modelos de comunidad. Como representación de bajo nivel genérica para señales de audio, se analiza el marco de los coeficientes "cepstrum", evaluando su rendimiento en tareas de clasificación. Encontramos que el cambio a un filtro auditivo más reciente como los filtros de gammatonos mejora, a gran escala, respecto de las representaciones tradicionales basadas en la escala mel. Después consideramos tres tipos comunes de sonidos para la obtención de representaciones agregadas. Se demuestra que varias funciones de análisis de series temporales calculadas a partir de los coeficientes "cepstrum" complementan las estadísticas tradicionales para un mejor rendimiento. Para interactuar con grandes bases de datos de sonidos, se propone un nuevo algoritmo no supervisado que genera automáticamente organizaciones taxonómicas basadas en las representaciones de señal de bajo nivel. En base a estudios con usuarios, mostramos que nuestro enfoque se puede utilizar en lugar de los sistemas tradicionales de clasificación supervisada para proporcionar un léxico de categorías acústicas adecuadas para aplicaciones creativas. A continuación, se describe una representación computacional para música creada a partir de muestras de audio. Demostramos, a través de un experimento con usuarios, que facilita la creación colaborativa y posibilita el análisis computacional usando los léxicos generados por las taxonomías de sonido. Finalmente, nos centramos en la representación y análisis de comunidades de usuarios. Proponemos un método para medir la creatividad colectiva en el intercambio de audio. Mediante un análisis de la actividad de la comunidad Freesound durante un periodo de más de 5 años, se muestra que las medidas propuestas de creatividad se pueden relacionar significativamente con la estructura social descrita mediante análisis de redes.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados