Ir al contenido

Documat


Procesos de ramificación bisexuales de Galton-Watson en ambiente variable

  • Autores: Alfonso Ramos Cantariño
  • Directores de la Tesis: Manuel Molina Fernández (dir. tes.) Árbol académico, Manuel Mota Medina (dir. tes.) Árbol académico
  • Lectura: En la Universidad de Extremadura ( España ) en 2002
  • Idioma: español
  • Tribunal Calificador de la Tesis: Francisco José Cano Sevilla (presid.) Árbol académico, Gerardo Sanz Sáiz (secret.) Árbol académico, Mihaylow Ianev Nikolay (voc.) Árbol académico, Asunción Rubio de Juan (voc.) Árbol académico, Jorge Elías Ollero Hinojosa (voc.) Árbol académico
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Esta tesis doctoral está encuadrada dentro de la Teoría General sobre Procesos de Ramificiación de Galton-Watson, centrándose en la familia de procesos de Galton-Watson bisexuales, En concreto, se han realizado aportaciones a la teoría probabilística de dos nuevos modelos de Galton-Watson bisexuales, a saber, proceso de Galton-Watson bisexual con apareamiento dependiente del tamaño de la población y el proceso Galton-Watson bisexual en ambiente variable. Está estructurada en tres capítulos, unas conclusiones y algunas cuestiones para futura investigación.

      En el capítulo 1, de carácter introductorio, se proporciona una visión general sobre los modelos de ramificación que constituyen la clase de los procesos de Galton-Watson bisexuales y los principales problemas que sobre ellos se han investigado hasta el presente momento.

      Los capítulos 2 y 3, introducimos el modelo bisexual con apareamiento dependiente del tamaño de la población. Tras proceder a su descripción probabilística, comprobamos que es una cadena de Markov con probabilidades de transición estacionarias, determinamos una serie de relaciones entre las funciones generatrices de probabilidad asociadas a las variables aleatorias que intervienen en el modelo y, apoyándonos en tales relaciones, obtenemos los principales momentos del proceso. En un siguiente paso, proporcionamos condiciones bajo las cuales se produce la extinción del proceso con probabilidad 1 y condicones que nos garantizan su no extinción con probabilidad positiva y, bajo situación de no extinción, estudiamos resultados relativos a la convergencia casi segura, en $L^1$ y en $L^2$, del proceso, convenientemente normalizado, hacia cierta variable aleatoria límite finita y no degenerada en cero. Finalmente, obtenemos algunos resultados relativos a su progenie acumulada hasta cierta generación.

      En el capítulo 3, introducimos nuestro segundo modelo, el denominado modelo bisexual en ambiente


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno