Ir al contenido

Documat


El método de descomposición en ecuaciones diferenciales ordinarias con parámetro

  • Autores: Mohammed Fathí Al-Hayani Waleed
  • Directores de la Tesis: Luis Casasús Latorre (dir. tes.) Árbol académico
  • Lectura: En la Universidad Politécnica de Madrid ( España ) en 2002
  • Idioma: español
  • Tribunal Calificador de la Tesis: José Gaspar González Montiel (presid.) Árbol académico, José María Sierra Carrizo (secret.) Árbol académico, Jaime Muñoz Masqué (voc.) Árbol académico, Ramón Alonso Sanz (voc.) Árbol académico, Purificación González Sancho (voc.) Árbol académico
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Se ha comprobado que el método de descomposición proporciona una convergencia rápida de la series solución de ecuaciones lineales y no lineales, deterministas y estocásticas, El objetivo de este trabajo es presentar técnicas adecuadas para la implementación del método en EDO con parámetros, tanto en problemas de valor inicial como en problemas de contorno. Determinamos la validez del método utilizando un teorema de punto fijo en los siguientes tipos de problemas:

      Problemas de Valor Inicial (Capítulo II) Problemas de Contorno Lineales (Capítulo III) Problemas de Contorno no Lineales (Capítulo IV) Problemas con Puntos de Retroceso (Capítulo V) Problemas con Discontinuidades (Capítulo VI) Comparamos el método con las técnicas usuales de perturbación y diferencias finitas, analizando la mejor elección del operador y el rango de valores del parámetro donde los métodos de descomposición son convergentes. Se utilizan en casi todos los problemas dos algoritmos de descomposición, llamados Estándar y Modificado.

      En cada Capítulo nos fijamos especialmente en los problemas singularmente perturbados. La comprobación de la validez del método ha exigido un notable trabajo de computación. Se han utilizado a este fin algunos de los problemas más relevantes de la bibliografía. Nuestros resultados se dan en términos del orden estimado de convergencia (local y global), errores residuales y relativos y normas de los términos Yk(x) en los aproximantes n(x) = Y0(x) +...+ Un(x). Algunos de los resultados originales son la aplicación del método a problemas con discontinuidades, puntos de retroceso y problemas de orden mayor que 2.


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno