EL OBJETO DE ESTE ESTUDIO SON LAS REPRESENTACIONES LINEALES DE DIMENSION 2 DE GAL (Q-/Q) EN UN CUERPO ALGEBRAICAMENTE CERRADO, DE TIPO OCTAEDRICO E INDICE 2, LA MODULARIDAD DE LAS REPRESENTACIONES IRREDUCIBLES DE DETERMINANTE IMPAR SE FORMULA EN LAS CONJETURAS DE ARTIN Y SERRE. EN EL TRABAJO SE CALCULAN EXPLICITAMENTE LAS CONSTANTES NIVEL, PESO Y CARACTER, QUE DETERMINAN EL ESPACIO DONDE DEBE HALLARSE LA FORMA MODULAR ASOCIADA, OBTENIENDO ASIMISMO LAS CONSTANTES MINIMALES, ASOCIADAS A LA REPRESENTACION PROYECTIVA. TODO ELLO REQUIERE UNA DESCRIPCION EXHAUSTIVA DE LA ARITMETICA DE LAS EXTENSIONES OCTAEDRICAS DE Q. EN PARTICULAR, SE DETERMINAN TODAS LAS EXTENSIONES Q2 CUYO GRUPO DE GALOIS ES UN SUBGRUPO: DEL GRUPO OCTAEDRICO S4 MEDIANTE LA RESOLUCION SUCESIVA DE PROBLEMAS DE INMERSION, AMPLIANDO ASI LOS EJERCICIOS DIADICOS DE WEIL. FINALMENTE, SE ANALIZA EL CASO PARTICULAR DE LAS REPRESENTACIONES EN CARACTERISTICA 3 QUE PROVIENEN DE LA ACCION GALOISIANA SOBRE LOS PUNTOS DE 3-TORSION DE CURVAS ELIPTICAS, UN CASO DE ESPECIAL RELEVANCIA A LA VISTA DE LAS TECNICAS UTILIZADAS POR WILES PARA LA DEMOSTRACION DE LA CONJETURA DE SHIMURA-TANIYAMA EN EL CASO SEMIESTABLE.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados