En esta memoria se establece un enfoque puramente combinatorio de las operaciones cohomológicas de Steentod y Adem a nivel de cociclos. La principal motivación para este estudio es el intentar cubrir la falta de información que hay actualmente en la literatura sobre las estructuras combinatorias subyacentes en estas operaciones cohomológicas. Trabajando en el contexto de la Topología Simplicial y haciendo uso de la Teoría de Perturbación Homológica, se diseña una maquinaria álgebro-combinatorial para la generación de operaciones cohomológicas apartir de una contracción Eilenberg-Zilber.El resultado de esta técnica es la descripción simplicial normalizada de morfismos que operan a nivel de cociclos y que determinan estas operaciones. Finalmente, esta formulación explícita permite considerar este campo desde una óptica algorítmica.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados