Sea V¿el complementario, en una superficie de Riemann cualquiera V, de un punto ( o de un conjunto fino de puntos), En este trabajo se caracterizan los subcuerpos, del cuerpo de funciones meromorfas en V¿, conteniendo suficientes funciones como para que se verifique una propiedad de factorizacion similar a la del teorema clásico de Weierstrass. Tambien se demuestra que el cuerpo generado por las funciones de Baker no es de tipo y se encuentra solución para el problema de determinar los divisores, en V¿, de las funciones holomorfas que admiten una factorización con las funciones de Baker como factores.
Tambien, como aplicación, se encuentra un teorema que nos da una caracterizacion de los productos infinitos de funciones meromorfas en V, con grado acotado, que convergen normalmente en los subconjuntos compactos de V¿.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados