En este trabajo se realiza un analisis de la conjetura de Friedman-Paris, acerca de la equivalencia entre los fragmentos de la Aritmetica de Peano obtenidos al restringir los esquemas de induccion y minimacion a Formula An+1, Para ello se consideran varias versiones de la conjetura y se estudian condiciones suficientes( y en ocasiones tambien necesarias) para que se de la equivalencia buscada en cada caso.
Se estudian diversas relativizaciones de los esquemas axiomáticos para fórmulas An+1, en los que se exige que la equivalencia entre las Formulas n+1 y n+1 se pruebe en una teoria dada(con esto se sustituye la parte semántica de los esquemas que describen la conjetura de Friedman-Paris, por una condición sintactica).
Como una segunda aproximacion a la conjetura se estudian las n+2 conscuencias de una teoria, considerando la posibilidad de describirlas mediante una familia de funciones no decrecientes de grafo in-definible.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados