Ir al contenido

Documat


Resumen de Aspectos geométricos de la diferenciación generalizada

Juan Jacobo Perán Mazón Árbol académico

  • CON EL PROPOSITO DE INTRODUCIR UNA NOCION GENERALIZADA DE APROXIMACION CONICA EN UN PUNTO A UN SUBCONJUNTO DE UN ESPACIO NORMADO, SE ABORDA: 1,- EL ESTUDIO DE LA EXTENSION DE MULTIFUNCIONES A ESPACIOS DE ULTRAFILTROS Y DE LAS PROPIEDADES TOPOLOGICAS RELACIONADAS. 2.- LA INTRODUCCION Y ESTUDIO DE NUEVOS CONCEPTOS DE LIMITES INFERIOR Y SUPERIOR DE MULTIFUNCIONES DEFINIDAS UTILIZANDO EXTENSIONES POR MEDIO DE ULTRAFILTROS. LOS LIMITES DE KURATOWSKI RESULTAN SER CASOS PARTICULARES.

    3.- LA DEFINICION Y ESTUDIO DE LOS ESPACIOS MULTIVECTORIALES, QUE SE CARACTERIZAN POR ESTAR DOTADOS DE UNA ADICION MULTIEVALUADA. EL PROPOSITO DE INTRODUCIR ESTE NUEVO CONCEPTO ES EXTENDER LA ESTRUCTURA ALGEBRAICA DE ESPACIO VECTORIAL A SU ESPACIO DE ULTRAFILTROS. SE OBTIENEN RESULTADOS SOBRE LA EXTENSION DE FORMAS LINEALES EN ESPACIOS DE BANACH A SU EXTENSION MULTIVECTORIAL NORMADA.

    CONCLUYE LA MEMORIA CON UN ESTUDIO CRITICO, EN EL MARCO GENERAL CREADO, DE LAS PRINCIPALES NOCIONES DE CONO TANGENTE PRESENTADAS POR DIVERSOS AUTORES.


Fundación Dialnet

Mi Documat