Ir al contenido

Documat


Optimización de algoritmos bioinspirados en sistemas heterogéneos CPU-GPU.

  • Autores: Antonio Llanes Castro Árbol académico
  • Directores de la Tesis: José María Cecilia Canales (dir. tes.) Árbol académico, Horacio E. Pérez Sánchez (dir. tes.) Árbol académico, Antonia María Sánchez Pérez (dir. tes.) Árbol académico
  • Lectura: En la Universidad Católica San Antonio de Murcia ( España ) en 2016
  • Idioma: español
  • Tribunal Calificador de la Tesis: Federico Silla Jiménez (presid.) Árbol académico, Raquel Martínez España (secret.) Árbol académico, José García Rodríguez (voc.) Árbol académico
  • Enlaces
    • Tesis en acceso abierto en: TESEO
  • Resumen
    • Los retos científicos del siglo XXI precisan del tratamiento y análisis de una ingente cantidad de información en la conocida como la era del Big Data. Los futuros avances en distintos sectores de la sociedad como la medicina, la ingeniería o la producción eficiente de energía, por mencionar sólo unos ejemplos, están supeditados al crecimiento continuo en la potencia computacional de los computadores modernos. Sin embargo, la estela de este crecimiento computacional, guiado tradicionalmente por la conocida “Ley de Moore”, se ha visto comprometido en las últimas décadas debido, principalmente, a las limitaciones físicas del silicio. Los arquitectos de computadores han desarrollado numerosas contribuciones multicore, manycore, heterogeneidad, dark silicon, etc, para tratar de paliar esta ralentización computacional, dejando en segundo plano otros factores fundamentales en la resolución de problemas como la programabilidad, la fiabilidad, la precisión, etc.

      El desarrollo de software, sin embargo, ha seguido un camino totalmente opuesto, donde la facilidad de programación a través de modelos de abstracción, la depuración automática de código para evitar efectos no deseados y la puesta en producción son claves para una viabilidad económica y eficiencia del sector empresarial digital. Esta vía compromete, en muchas ocasiones, el rendimiento de las propias aplicaciones; consecuencia totalmente inadmisible en el contexto científico.

      En esta tesis doctoral tiene como hipótesis de partida reducir las distancias entre los campos hardware y software para contribuir a solucionar los retos científicos del siglo XXI. El desarrollo de hardware está marcado por la consolidación de los procesadores orientados al paralelismo masivo de datos, principalmente GPUs Graphic Processing Unit y procesadores vectoriales, que se combinan entre sí para construir procesadores o computadores heterogéneos HSA.

      En concreto, nos centramos en la utilización de GPUs para acelerar aplicaciones científicas. Las GPUs se han situado como una de las plataformas con mayor proyección para la implementación de algoritmos que simulan problemas científicos complejos. Desde su nacimiento, la trayectoria y la historia de las tarjetas gráficas ha estado marcada por el mundo de los videojuegos, alcanzando altísimas cotas de popularidad según se conseguía más realismo en este área. Un hito importante ocurrió en 2006, cuando NVIDIA (empresa líder en la fabricación de tarjetas gráficas) lograba hacerse con un hueco en el mundo de la computación de altas prestaciones y en el mundo de la investigación con el desarrollo de CUDA “Compute Unified Device Arquitecture. Esta arquitectura posibilita el uso de la GPU para el desarrollo de aplicaciones científicas de manera versátil. A pesar de la importancia de la GPU, es interesante la mejora que se puede producir mediante su utilización conjunta con la CPU, lo que nos lleva a introducir los sistemas heterogéneos tal y como detalla el título de este trabajo. Es en entornos heterogéneos CPU-GPU donde estos rendimientos alcanzan sus cotas máximas, ya que no sólo las GPUs soportan el cómputo científico de los investigadores, sino que es en un sistema heterogéneo combinando diferentes tipos de procesadores donde podemos alcanzar mayor rendimiento. En este entorno no se pretende competir entre procesadores, sino al contrario, cada arquitectura se especializa en aquella parte donde puede explotar mejor sus capacidades.

      Donde mayor rendimiento se alcanza es en estos clústeres heterogéneos, donde múltiples nodos son interconectados entre sí, pudiendo dichos nodos diferenciarse no sólo entre arquitecturas CPU-GPU, sino también en las capacidades computacionales dentro de estas arquitecturas. Con este tipo de escenarios en mente, se presentan nuevos retos en los que lograr que el software que hemos elegido como candidato se ejecuten de la manera más eficiente y obteniendo los mejores resultados posibles.

      Estas nuevas plataformas hacen necesario un rediseño del software para aprovechar al máximo los recursos computacionales disponibles. Se debe por tanto rediseñar y optimizar los algoritmos existentes para conseguir que las aportaciones en este campo sean relevantes, y encontrar algoritmos que, por su propia naturaleza sean candidatos para que su ejecución en dichas plataformas de alto rendimiento sea óptima. Encontramos en este punto una familia de algoritmos denominados bioinspirados, que utilizan la inteligencia colectiva como núcleo para la resolución de problemas. Precisamente esta inteligencia colectiva es la que les hace candidatos perfectos para su implementación en estas plataformas bajo el nuevo paradigma de computación paralela, puesto que las soluciones pueden ser construidas en base a individuos que mediante alguna forma de comunicación son capaces de construir conjuntamente una solución común.

      Esta tesis se centrará especialmente en uno de estos algoritmos bioinspirados que se engloba dentro del término metaheurísticas bajo el paradigma del Soft Computing, el Ant Colony Optimization “ACO”. Se realizará una contextualización, estudio y análisis del algoritmo. Se detectarán las partes más críticas y serán rediseñadas buscando su optimización y paralelización, manteniendo o mejorando la calidad de sus soluciones. Posteriormente se pasará a implementar y testear las posibles alternativas sobre diversas plataformas de alto rendimiento. Se utilizará el conocimiento adquirido en el estudio teórico-práctico anterior para su aplicación a casos reales, más en concreto se mostrará su aplicación sobre el plegado de proteínas.

      Todo este análisis es trasladado a su aplicación a un caso concreto. En este trabajo, aunamos las nuevas plataformas hardware de alto rendimiento junto al rediseño e implementación software de un algoritmo bioinspirado aplicado a un problema científico de gran complejidad como es el caso del plegado de proteínas. Es necesario cuando se implementa una solución a un problema real, realizar un estudio previo que permita la comprensión del problema en profundidad, ya que se encontrará nueva terminología y problemática para cualquier neófito en la materia, en este caso, se hablará de aminoácidos, moléculas o modelos de simulación que son desconocidos para los individuos que no sean de un perfil biomédico.


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno