Santiago Vidal Puig
[EN] An accurate fault diagnosis of both, faults sensors and real process faults have become more and more important for process monitoring (minimize downtime, increase safety of plant operation and reduce the manufacturing cost). Quick and correct fault diagnosis is required in order to put back on track our processes or products before safety or quality can be compromised. In the study and comparison of the fault diagnosis methodologies, this thesis distinguishes between two different scenarios, methods for multivariate statistical quality control (MSQC) and methods for latent-based multivariate statistical process control: (Lb-MSPC). In the first part of the thesis the state of the art on fault diagnosis and identification (FDI) is introduced. The second part of the thesis is devoted to the fault diagnosis in multivariate statistical quality control (MSQC). The rationale of the most extended methods for fault diagnosis in supervised scenarios, the requirements for their implementation, their strong points and their drawbacks and relationships are discussed. The performance of the methods is compared using different performance indices in two different process data sets and simulations. New variants and methods to improve the diagnosis performance in MSQC are also proposed. The third part of the thesis is devoted to the fault diagnosis in latent-based multivariate statistical process control (Lb-MSPC). The rationale of the most extended methods for fault diagnosis in supervised Lb-MSPC is described and one of our proposals, the Fingerprints contribution plots (FCP) is introduced. Finally the thesis presents and compare the performance results of these diagnosis methods in Lb-MSPC. The diagnosis results in two process data sets are compared using a new strategy based in the use of the overall sensitivity and specificity [ES] La realización de un diagnóstico preciso de los fallos, tanto si se trata de fallos de sensores como si se trata de fallos de procesos, ha llegado a ser algo de vital importancia en la monitorización de procesos (reduce las paradas de planta, incrementa la seguridad de la operación en planta y reduce los costes de producción). Se requieren diagnósticos rápidos y correctos si se quiere poder recuperar los procesos o productos antes de que la seguridad o la calidad de los mismos se pueda ver comprometida. En el estudio de las diferentes metodologías para el diagnóstico de fallos esta tesis distingue dos escenarios diferentes, métodos para el control de estadístico multivariante de la calidad (MSQC) y métodos para el control estadístico de procesos basados en el uso de variables latentes (Lb-MSPC). En la primera parte de esta tesis se introduce el estado del arte sobre el diagnóstico e identificación de fallos (FDI). La segunda parte de la tesis está centrada en el estudio del diagnóstico de fallos en control estadístico multivariante de la calidad. Se describen los fundamentos de los métodos más extendidos para el diagnóstico en escenarios supervisados, sus requerimientos para su implementación sus puntos fuertes y débiles y sus posibles relaciones. Los resultados de diagnóstico de los métodos es comparado usando diferentes índices sobre los datos procedentes de dos procesos reales y de diferentes simulaciones. En la tesis se proponen nuevas variantes que tratan de mejorar los resultados obtenidos en MSQC. La tercera parte de la tesis está dedicada al diagnóstico de fallos en control estadístico multivariante de procesos basados en el uso de modelos de variables latentes (Lb-MSPC). Se describe los fundamentos de los métodos mas extendidos en el diagnóstico de fallos en Lb-MSPC supervisado y se introduce una de nuestras propuestas, el fingerprint contribution plot (FCP). Finalmente la tesis presenta y compara los resultados de diagnóstico de los métodos propuestos en Lb-MSPC. Los resultados son comparados sobre los datos de dos procesos usando una nueva estrategia basada en el uso de la sensitividad y especificidad promedia. [CAT] La realització d'un diagnòstic precís de les fallades, tant si es tracta de fallades de sensors com si es tracta de fallades de processos, ha arribat a ser de vital importància en la monitorització de processos (reduïx les parades de planta, incrementa la seguretat de l'operació en planta i reduïx els costos de producció) . Es requerixen diagnòstics ràpids i correctes si es vol poder recuperar els processos o productes abans de que la seguretat o la qualitat dels mateixos es puga veure compromesa. En l'estudi de les diferents metodologies per al diagnòstic de fallades esta tesi distingix dos escenaris diferents, mètodes per al control estadístic multivariant de la qualitat (MSQC) i l mètodes per al control estadístic de processos basats en l'ús de variables latents (Lb-MSPC). En la primera part d'esta tesi s'introduïx l'estat de l'art sobre el diagnòstic i identificació de fallades (FDI). La segona part de la tesi està centrada en l'estudi del diagnòstic de fallades en control estadístic multivariant de la qualitat. Es descriuen els fonaments dels mètodes més estesos per al diagnòstic en escenaris supervisats, els seus requeriments per a la seua implementació els seus punts forts i febles i les seues possibles relacions. Els resultats de diagnòstic dels mètodes és comparat utilitzant diferents índexs sobre les dades procedents de dos processos reals i de diferents simulacions. En la tesi es proposen noves variants que tracten de millorar els resultats obtinguts en MSQC. La tercera part de la tesi està dedicada al diagnòstic de fallades en control estadístic multivariant de processos basat en l'ús de models de variables latents (Lb-MSPC). Es descriu els fonaments dels mètodes més estesos en el diagnòstic de fallades en MSPC supervisat i s'introdueix una nova proposta, el fingerprint contribution plot (FCP). Finalment la tesi presenta i compara els resultats de diagnòstic dels mètodes proposats en MSPC. Els resultats són comparats sobre les dades de dos processos utilitzant una nova estratègia basada en l'ús de la sensibilitat i especificitat mitjana.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados