Se presenta una nueva familia de métodos explícitos para problemas de valores iniciales formulados en términos de EDOs de primer y segundo orden, Los métodos pueden ser vistos como una generalización de los conocidos métodos Runge-Kutta (en el caso de primer orden) y Runge-Kutta-Nystión (para segundo orden). Se muestra que es posible obtener métodos de 2 etapas y orden 3 y fórmulas de 3 etapas y orden 5 (4 en el caso de sistemas) para EDOs de primer orden y con bunas propiedades de estabilidad lineal (A y L-estabilidad). Para EDOs de segundo orden, se obtienen fórmulas de orden 4 y 2 etapas, alguna de las cuales integra exactamente osciladores. Algunos de los métodos considerados son óptimos con respecto al error bocal de --. En el caso de EDOs de primer orden se muestra como es posible obtener métodos de la familia considerada a partir de funciones de estabilidad lineal prefijado. Finalmente, diversos experimentos numéricos ilustran el comportamiento de los métodos propuestos y los comparan con otros ya existentes.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados