Ir al contenido

Documat


Operadores de promedio en espacios de funciones continuas. Espacios de Banach inyectivos

  • Autores: Carlos Ivorra Castillo
  • Directores de la Tesis: José Luis Blasco Olcina (dir. tes.) Árbol académico
  • Lectura: En la Universitat de València ( España ) en 1995
  • Idioma: español
  • Tribunal Calificador de la Tesis: Manuel Valdivia Ureña (presid.) Árbol académico, Óscar Blasco de la Cruz (secret.) Árbol académico, Fernando Bombal Gordón (voc.) Árbol académico, Juan Arias de Reyna Martínez (voc.) Árbol académico, Powel Domanski (voc.) Árbol académico
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • LA MEMORIA SE CENTRA EN EL ESTUDIO DE DOS NOCIONES RELACIONADAS CON LA TEORIA DE ESPACIOS DE BANACH DE FUNCIONES CONTINUAS SOBRE COMPACTOS COMO SON LOS ESPACIOS DE MILUTIN Y EL ESTUDIO DE LOS ESPACIOS DE BANACH INYECTIVOS ENTRE LOS ESPACIOS C(K), PARA AMBAS CONSIDERACIONES ES FUNDAMENTAL LA NOCION DE OPERADOR PROMEDIO ASOCIADO A UNA APLICACION O:S- TCONTINUA Y SUPRAYECTIVA ENTRE ESPACIOS COMPACTOS, COMO AQUEL OPERADOR U:C(S)- C(T) TAL QUE U(FO)=F PARA TODA F C(T). QUEDABAN ABIERTOS ALGUNOS PROBLEMAS EN LA MONOGRAFIA DE PELCZYNSKI (VEASE 33 DE LA BIBLIOGRAFIA) SOBRE LA POSIBILIDAD DE ENCONTRAR ALGUN ESPACIO DIADICO QUE NO FUERA CASI MILUTIN COMO EL ENCONTRAR ESPACIOS CASI MILUTIN, CON NORMA DE LOS OPERADORES PROMEDIOS ASOCIADOS PREFIJADAS. AMBOS PROBLEMAS SON RESUELTOS USANDO UN RESULTADO DEBIDO A DITOR. SE CONSIGUEN EJEMPLOS DE PLAMBDA-ESPACIOS PARA CIERTOS VALORES DE LAMBDA Y SE DA UN PROCEDIMIENTO PARA DETERMINAR ESPACIOS NO INYECTIVOS ENTRE LOS ESPACIOS DE FUNCIONES MEDIBLES ACOTADAS.


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno