SE DEFINE UNA NUEVA ESTRUCTURA GEOMETRICA (FIBRADOS ESPIGADOS) CONSISTENTE EN UN FIBRADO ASOCIADO A UN G-FIBRADO PRINCIPAL DOTADO DE UNA CONEXION Y CON UNA FOLIACION CONTENIDA EN LA DISTRIBUCION HORIZONTAL, SE ESTUDIAN SUS PROPIEDADES Y LAS CONDICIONES QUE CONSERVAN LA ESTRUCTURA BAJO OPERACIONES CON FIBRADOS. SE INTRODUCE UNA LEY DE MOVIMIENTO QUE GENERA EL PRINCIPIO DE LAS GEODESICAS O VARIEDADES TOTALMENTE GEODESICAS SOBRE LA VARIEDAD BASE.
TOMANDO COMO GRUPO ESTRUCTURAL EL DE POINCARE RESTRINGIDO (O DE GALILEO) Y COMO BASE EL ESPACIO-TIEMPO DE MINKOWSKI (O DE GALILEO), SE OBTIENEN LOS RESULTADOS DE LA MECANICA SIMPLECTICA RELATIVISTA (O NO RELATIVISTA) PARA LOS MOVIMIENTOS DE SISTEMAS DINAMICOS ELEMENTALES.
ADEMAS, SE EXTIENDEN ESTOS RESULTADOS A LA RELATIVIDAD GENERAL.
PARA EL CASO SIN MASA, SE OBTIENE (CUALITATIVAMENTE) LA DUALIDAD ONDA-CORPUSCULO; Y SE DEMUESTRA QUE EN EL PULL-BACK A UNA VARIEDAD DE LANDAU, HAY UNA CANTIDAD DISCRETA DE MAGNITUDES FISICAS CONSERVADAS.
TAMBIEN SE PRUEBA QUE LA ESTRUCTURA PERMITE DESCRIBIR LOS SISTEMAS DINAMICOS NO ELEMENTALES.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados