Ir al contenido

Documat


Contrastes de bondad de ajuste en el modelo de regresión con coeficientes aleatorios

  • Autores: Pedro Delicado Árbol académico
  • Directores de la Tesis: Juan José Romo Urroz (dir. tes.) Árbol académico
  • Lectura: En la Universidad Carlos III de Madrid ( España ) en 1995
  • Idioma: español
  • Tribunal Calificador de la Tesis: Daniel Peña Sánchez de Rivera (presid.) Árbol académico, Santiago Velilla Cerdán (secret.) Árbol académico, Antonio Cuevas González (voc.) Árbol académico, Wenceslao González Manteiga (voc.) Árbol académico, Fernando Jorge Tusell Palmer (voc.) Árbol académico
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • EL OBJETIVO ESENCIAL DE LA TESIS ES DESARROLLAR CONTRASTES DE BONDAD DE AJUSTE Y CONTRASTES DE NO ALEATORIEDAD DE LOS COEFICIENTES EN EL MODELO DE REGRESION CON COEFICIENTES ALEATORIOS, EN PRIMER LUGAR, SE PROPONEN CONTRASTES DE BONDAD DE AJUSTE DE LA DISTRIBUCION DE LOS COEFICIENTES A UNA DADA, PARA EXTENDERLOS DESPUES AL CASO EN QUE SE POSTULA UNA FAMILIA PARAMETRICA DE DISTRIBUCIONES A LA QUE PUEDE PERTENECER LA DE LOS COEFICIENTES. EN AMBOS CASOS SE PRUEBA LA CONVERGENCIA DE LOS ESTADISTICOS PROPUESTOS A DISTRIBUCIONES DEFINIDAS A PARTIR DE PROCESOS ESTOCASTICOS GAUSSIANOS, SE PROPONEN ESQUEMAS DE REMUESTREO Y SE DEMUESTRA QUE SON UTILES PARA APROXIMAR ESAS DISTRIBUCIONES: LOS ESTADISTICOS OBTENIDOS POR REMUESTREO CONVERGEN A LA MISMA DISTRIBUCION QUE LOS ESTADISTICOS ORIGINALES. FINALIZA LA MEMORIA CON EL ESTUDIO DEL CONTRASTE DE CONSTANCIA DE LOS COEFICIENTES.

      SE SIGUE LA LINEA DE INVESTIGACION DESARROLLADA EN LOS CAPITULOS PRECEDENTES Y SE PRUEBAN RESULTADOS QUE APOYAN LA DEFINICION DE DIVERSAS FORMAS DE CONTRASTAR ESA HIPOTESIS. SE UTILIZAN TAMBIEN ALGORITMOS DE REMUESTREO PARA OBTENER LOS PUNTOS CRITICOS DE ESTOS TESTS.


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno