Manuel José Salazar Jiménez
En esta memoria se estudian tres problemas de difusion matriciales mixtos singulares fuertemente acoplados de ecuaciones en derivadas parciales, En los tres se aplica el metodo de separacion de variables, con lo que la ecuacion inicial se transforma en dos ecuaciones diferenciales, una de primer orden y de sencilla solucion y otra de segundo orden de tipo Sturm Lioville.
El primero y el tercer problema tratan el estudio del caso continuo con coeficientes constantes y cuando el coeficiente que no determina la singularidad es una funcion matricial, respectivametne. Debido a que la solucion general esta en forma de serie infinita convergente absolutamente tambien estudiamos la obtencion de una solucion aproximada calculable, con cota de error dada a priori, truncando adecuadamente la serie.
En ambos casos se utiliza la teoria sobre sistemas singulares, a coeficientes constates en el primer caso, o de sistemas singulares no autonomos en el segundo, transformado el problea en un nuevo problema con coeficientes constantes.
En el segundo problema consideramos la obtencion de soluciones discretas estables del problema a coeficientes constantes siguiendo un razonamiento analogo al anterior, en su vertiente discreta.
En todos los casos se presentan algoritmos implementados en codigo mathematica y ejemplos.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados