Ir al contenido

Documat


Mathematical Developments on Isotropic Positive Definite Functions on Spheres

  • Autores: Ahmed Arafat Hassan Moahmmed
  • Directores de la Tesis: Jorge Mateu Mahiques (dir. tes.) Árbol académico, Emilio Porcu (codir. tes.) Árbol académico
  • Lectura: En la Universitat Jaume I ( España ) en 2017
  • Idioma: inglés
  • Número de páginas: 115
  • Tribunal Calificador de la Tesis: Morten Nielsen (presid.) Árbol académico, Salvador Hernández Muñoz (secret.) Árbol académico, Stefano De Marchi (voc.) Árbol académico
  • Enlaces
    • Tesis en acceso abierto en: TDX
  • Resumen
    • In this thesis, three open problems related to the isotropic positive definite functions on the sphere have been solved. Firstly, we provide necessary and sufficient conditions for the equivalence of two Gaussian measures with two different covariance models with associated d-Schoenberg sequences. Secondly, we find the d-Schoenberg coefficients associated with an isotropic positive definite function on the sphere in terms of the Fourier coefficients on the circle. Thirdly, we drive the infimum of the second derivative at zero for the class of the locally supported isotropic positive definite functions on the sphere. Finally, we propose a new family of Markov processes in maximal compact subgroups of a semisimple Lie group.


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno