Ir al contenido

Documat


Topologías asociadas a subconjuntos normantes en espacios de Banach

  • Autores: Guillermo Manjabacas Tendero Árbol académico
  • Directores de la Tesis: Bernardo Cascales Salinas (dir. tes.) Árbol académico
  • Lectura: En la Universidad de Murcia ( España ) en 1998
  • Idioma: español
  • Tribunal Calificador de la Tesis: José Orihuela Calatayud (presid.) Árbol académico, Antonio José Pallarés Ruiz (secret.) Árbol académico, Vaclav Zizler (voc.) Árbol académico, Francisco José Freniche Ibáñez (voc.) Árbol académico, Isaac Namioka (voc.) Árbol académico
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Se estudian propiedades de subconjuntos de un espacio de Banach que son compactos para topologías de la forma /sigma (X,B) donde B es un subconjunto normante de la bola dual, En concreto se dan condiciones nuevas que aseguren: a) la validez de una propiedad de tipo Krein -Smulian para topologías. /sigma (X,B), es decir, cuándo la envoltura convexa y /sigma- (X,B)-cerrada de un subconjunto /sigma (X,B) -compacto es /sigma (X,B)-compacta; b) la fragmentabilidad por la norma de un subconjunto t-p (D)-compacto de un espacio de funciones reales continuas definidas en un compacto K, donde D es denso en K; c) respuestas positivas al problema de la frontera referente a si los subconjuntos acotados y /sigma (X,B)-compactos son débilmente compactos cuando B es una boundary de la bola dual.

      Finalmente, se dan aplicaciones de los resultados anteriores a espacios de Banach concretos: /ell 1(/GAMMA); L 1(/mu) para una medida vectorial /mu, espacios de Orlicz, espacios de funciones continuas de un espacio compacto en un espacio de Banach y en el /epsilon-producto de dos espacios de Banach.


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno