Un problema muy interesante en Inteligencia Artificial es la clasificación de información imprecisa, Distintos autores han estudiado este problema y han desarrollado teorias para solucionarlo.
Una de las teorias que más éxito ha tenido es la de Conjuntos Aproximados, desarrollada por Z.Pawlak. Esta teoria asume que el conocimiento esta constituido por bloques basicos, y su finalidad es la de clasificar información. El problema es que no permite la generación de reglas de decisión con un error asociado (incertidumbre). Como una extensión de esta teoria W. Ziarko desarrolló el modelo de Conjuntos Aproximados con Precisión Variable, que permite su aplicación a problemas no deterministas.
Partiendo de los estudios de W. Ziardo, esta tesis propone un modelo que permite reducir un sistema causal. Para ello, se redifinen los conceptos necesarios del modelo de Conjuntos Aproximados de Pawlak, permitiendo la introducción de incertidumbre tanto a nivel de bloques constitutivos del conocimiento, como a nivel de clasificación. Así, se consigue la generación de reglas de decisión más fuertes, en el sentido de que, clasifican más objetos y hay menos atributos como antecedentes. Al modelo resultante se le ha denominado Modelo de Conjuntos Aproximados con Incertidumbre(CAI).
© 2008-2024 Fundación Dialnet · Todos los derechos reservados