Ir al contenido

Documat


Dinámica absolutamente continua y singular en sistemas lineales bidimensionales

  • Autores: Ana Isabel Alonso de Mena Árbol académico
  • Directores de la Tesis: Rafael Obaya García (dir. tes.) Árbol académico
  • Lectura: En la Universidad de Valladolid ( España ) en 1997
  • Idioma: español
  • Tribunal Calificador de la Tesis: Félix López Fernández-Asenjo (presid.) Árbol académico, Sylvia Novo (secret.) Árbol académico, José Manuel Ferrándiz Leal (voc.) Árbol académico, Miguel Angel Sanz Alix (voc.) Árbol académico, Jesús Rojo García (voc.) Árbol académico
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • CONSIDEREMOS UNA FAMILIA DE SISTEMAS LINEALES BIDIMENSIONALES CUYOS COEFICIENTES SON FUNCIONES CONTINUAS EVALUADAS A LO LARGO DE LAS TRAYECTORIAS DEFINIDAS POR UN FLUJO CONTINUO EN UN ESPACIO METRICO, DESDE EL PUNTO DE VISTA ERGODICO LA DINAMICA DE ESTOS SISTEMAS SE DIVIDE EN DOS TIPOS: DINAMICA ABSOLUTAMENTE CONTINUA Y DINAMICA SINGULAR. EL OBJETIVO PRINCIPAL DE ESTE TRABAJO CONSISTE EN EXPLICAR LAS CARACTERISTICAS BASICAS DE ESTAS DINAMICAS Y SUS DIFERENCIAS.

      EN DINAMICA ABSOLUTAMENTE CONTINUA SE OBTIENE UNA DESCRIPCION COMPLETA DE LA ESTRUCTURA MEDIBLE DEL FLUJO PROYECTIVO INDUCIDO, SE ESTABLECE UNA RELACION DIRECTA ENTRE LAS MEDIDAS LINEALES Y LAS LAMINAS ERGODICAS Y SE DEMUESTRA QUE TODA MEDIDA INVARIANTE ABSOLUTAMENTE CONTINUA PUEDE REINTEGRARSE A PARTIR DE LAS COMPONENTES ERGODICAS DEL FIBRADO.

      EN DINAMICA SINGULAR SE PROFUNDIZA EN LA RELACION EXISTENTE ENTRE LAS ESTRUCTURAS MEDIBLE Y TOPOLOGICA DEL FLUJO Y SE ANALIZAN ALGUNOS ASPECTOS RELATIVOS A LAS PROPIEDADES DE OSCILACION Y RECURRENCIA DE LAS SOLUCIONES. DEMOSTRAMOS QUE LA REGION DE OSCILACION EN LOS EXTREMOS CUANDO EL FIBRADO PROYECTIVO ADMITE UNA 2-LAMINA MEDIBLE, ES UN SUBCONJUNTO BOREL, INVARIANTE DE MEDIDA UNO.


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno