La tesis recoge una exposición sistemática del estado del arte de los modelos y algoritmos de redes neuronales en el marco de la teoría del aprendizaje estadístico, incluyendo los algoritmos Boosting. Como aportaciones relevantes destacan las siguientes:
1,- La clarificación de las relaciones entre las redes RRBF de regularización, las Support Vector Machines y el Kringing.
2,- La utilización del covariograma como núcleo en las arquitecturas radiales, bajo un contexto bayesiano, que permite incorporar al modelo la estructura de asociación provocada por la hipótesis de tendencia, y mejora los resultados obtenidos con núcleos estándar isotrópicos.
3,- El Kriging Regulariado como resultado de la aplicación de la metodología de los support vectors al Kriging, obteniéndose como casos particulares el Kriging Simple y el Kriging Universal, así como la regresión bayesiana con prior gausiana para los parámetros.
4,- Un algoritmo LS-Boost que utiliza como "weak learners" redes neuronales RBF sobre proyecciones en el esapcio de centrada.
5,- Una batería de algoritmos para series de tiempo heterocedásticas:
A,- Modelos de redes neuronales para tendencia-varianza entrenadas simultáneamente mediante verosimilitud gausiana.
B,- La generalización del algoritmo Gradient-Boost para varias hipótesis, específicamente para tendencia-varianza simultáneas, utilizando como "weak learners" redes neuronales RBF y MLP, y técnicas ARMA-GARCH, éstas últimas con el fin de modelizar la posible heterocedasticidad de la serie del gradiente heredada de la serie original.
C,- Algoritmo WildBoostGarch como resultado de aplicar sucesivamente modelos GARCH a la discrepancia entre resíduos al cuadrado y varianza recogida en las iteraciones anteriores.
6,- Aplicación de los algoritmos anteriores a un problema de predicción en Mercados Financieros tanto sobre conjuntos artificiales de datos como una serie de datos reales del ín
© 2008-2024 Fundación Dialnet · Todos los derechos reservados