EN ESTA MEMORIA SE DA UNA EXTENSION DE LOS OPERADORES SEMI-FREDHOLM Y TAUBERIANOS CONSIDERANDOLOS COMO OPERADORES QUE PRESERVAN UNA FAMILIA DE CONJUNTOS, LOS RELATIVAMENTE COMPACTOS Y LOS DEBILMENTE RELATIVAMENTE COMPACTOS RESPECTIVAMENTE, PARA ELLO SE INTRODUCEN LAS DEFINICIONES DE "OPERADOR QUE PRESERVA UNA FAMILIA DE CONJUNTOS PO" Y "OPERADOR QUE CASI-PRESERVA UNA FAMILIA PO". APARTE DE ESTUDIAR ESTOS OPERADORES EN SU DEFINICION ORIGINAL SE ESTUDIAN LOS OPERADORES ASOCIADOS A LAS SIGUIENTES FAMILIAS DE CONJUNTOS: LOS LIMITADOS, LOS DUNFORD-PETTIS, LOS DEBILMENTE CONDICIONALMENTE COMPACTOS LOS V* Y LOS YA MENCIONADOS. ESTA PARTE DE LA MEMORIA SE EXPONE EN LOS CAPITULOS I Y III. EL CAPITULO II ESTA DEDICADO A LOS OPERADORES QUE PRESERVAN LOS CONJUNTOS DEBILMENTE CONDICIONALMENTE COMPACTOS, CONSIGUIENDO UNA CARACTERIZACION DE ESTOS OPERADORES Y DE LOS DE ROSENTHAL A TRAVES DEL OPERADOR BITRASPUESTO. POR ULTIMO EN EL CAPITULO IV SE DAN ALGUNAS APLICACIONES DE LOS RESULTADOS OBTENIDOS A LOS ESPACIOS DE FUNCIONES DE KOTHE, RELACIONANDOLOS CON EL CONOCIDO ESPACIO L1(U).
© 2008-2024 Fundación Dialnet · Todos los derechos reservados