Ihab Alkhoury
Research on Arabic Handwritten Text Recognition (HTR) and Arabic-English Machine Translation (MT) has been usually approached as two independent areas of study. However, the idea of creating one system that combines both areas together, in order to generate English translation out of images containing Arabic text, is still a very challenging task. This process can be interpreted as the translation of Arabic images. In this thesis, we propose a system that recognizes Arabic handwritten text images, and translates the recognized text into English. This system is built from the combination of an HTR system and an MT system. Regarding the HTR system, our work focuses on the use of Bernoulli Hidden Markov Models (BHMMs). BHMMs had proven to work very well with Latin script. Indeed, empirical results based on it were reported on well-known corpora, such as IAM and RIMES. In this thesis, these results are extended to Arabic script, in particular, to the well-known IfN/ENIT and NIST OpenHaRT databases for Arabic handwritten text. The need for transcribing Arabic text is not only limited to handwritten text, but also to printed text. Arabic printed text might be considered as a simple form of handwritten text version. Thus, for this kind of text, we also propose Bernoulli HMMs. In addition, we propose to compare BHMMs with state-of-the-art technology based on neural networks. A key idea that has proven to be very effective in this application of Bernoulli HMMs is the use of a sliding window of adequate width for feature extraction. This idea has allowed us to obtain very competitive results in the recognition of both Arabic handwriting and printed text. Indeed, a system based on it ranked first at the ICDAR 2011 Arabic recognition competition on the Arabic Printed Text Image (APTI) database. Moreover, this idea has been refined by using repositioning techniques for extracted windows, leading to further improvements in Arabic text recognition. In the case of handwritten text, this refinement improved our system which ranked first at the ICFHR 2010 Arabic handwriting recognition competition on IfN/ENIT. In the case of printed text, this refinement led to an improved system which ranked second at the ICDAR 2013 Competition on Multi-font and Multi-size Digitally Represented Arabic Text on APTI. Furthermore, this refinement was used with neural networks-based technology, which led to state-of-the-art results. For machine translation, the system was based on the combination of three state-of-the-art statistical models: the standard phrase-based models, the hierarchical phrase-based models, and the N-gram phrase-based models. This combination was done using the Recognizer Output Voting Error Reduction (ROVER) method. Finally, we propose three methods of combining HTR and MT to develop an Arabic image translation system. The system was evaluated on the NIST OpenHaRT database, where competitive results were obtained.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados