Francisco Álvaro Muñoz
La notación matemática es bien conocida y se utiliza en todo el mundo. La humanidad ha evolucionado desde simples métodos para representar cuentas hasta la notación formal actual capaz de modelar problemas complejos. Además, las expresiones matemáticas constituyen un idioma universal en el mundo científico, y se han creado muchos recursos que contienen matemáticas durante las últimas décadas. Sin embargo, para acceder de forma eficiente a toda esa información, los documentos científicos han de ser digitalizados o producidos directamente en formatos electrónicos. Aunque la mayoría de personas es capaz de entender y producir información matemática, introducir expresiones matemáticas en dispositivos electrónicos requiere aprender notaciones especiales o usar editores. El reconocimiento automático de expresiones matemáticas tiene como objetivo llenar ese espacio existente entre el conocimiento de una persona y la entrada que aceptan los ordenadores. De este modo, documentos impresos que contienen fórmulas podrían digitalizarse automáticamente, y la escritura se podría utilizar para introducir directamente notación matemática en dispositivos electrónicos. Esta tesis está centrada en desarrollar un método para reconocer expresiones matemáticas. En este documento proponemos un método para reconocer cualquier tipo de fórmula (impresa o manuscrita) basado en gramáticas probabilísticas. Para ello, desarrollamos el marco estadístico formal que deriva varias distribuciones de probabilidad. A lo largo del documento, abordamos la definición y estimación de todas estas fuentes de información probabilística. Finalmente, definimos el algoritmo que, dada cierta entrada, calcula globalmente la expresión matemática más probable de acuerdo al marco estadístico. Un aspecto importante de este trabajo es proporcionar una evaluación objetiva de los resultados y presentarlos usando datos públicos y medidas estándar. Por ello, estudiamos los problemas de la evaluación automática en este campo y buscamos las mejores soluciones. Asimismo, presentamos diversos experimentos usando bases de datos públicas y hemos participado en varias competiciones internacionales. Además, hemos publicado como código abierto la mayoría del software desarrollado en esta tesis. También hemos explorado algunas de las aplicaciones del reconocimiento de expresiones matemáticas. Además de las aplicaciones directas de transcripción y digitalización, presentamos dos propuestas importantes. En primer lugar, desarrollamos ¿captcha, un método para discriminar entre humanos y ordenadores mediante la escritura de expresiones matemáticas, el cual representa una novedosa aplicación del reconocimiento de fórmulas. En segundo lugar, abordamos el problema de detectar y segmentar la estructura de documentos utilizando el marco estadístico formal desarrollado en esta tesis, dado que ambos son problemas bidimensionales que pueden modelarse con gramáticas probabilísticas. El método desarrollado en esta tesis para reconocer expresiones matemáticas ha obtenido buenos resultados a diferentes niveles. Este trabajo ha producido varias publicaciones en conferencias internacionales y revistas, y ha sido premiado en competiciones internacionales.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados