Ir al contenido

Documat


Riemannian Geometry

Imagen de portada del libro Riemannian Geometry

Información General

  • Autores: Manfredo Perdigao do Carmo Valero
  • Editores: Boston [etc. : Birkhäuser, 1992
  • Año de publicación: 1992
  • País: Estados Unidos
  • Idioma: inglés
  • ISBN: 0-8176-3490-8
  • Texto completo no disponible (Saber más ...)

Resumen

  • This text has been adopted at: University of Pennsylvania, Philadelphia University of Connecticut, Storrs Duke University, Durham, NC California Institute of Technology, Pasadena University of Washington, Seattle Swarthmore College, Swarthmore, PA University of Chicago, IL University of Michigan, Ann Arbor "In the reviewer's opinion, this is a superb book which makes learning a real pleasure." ¿ Revue Romaine de Mathematiques Pures et Appliquees "This main-stream presentation of differential geometry serves well for a course on Riemannian geometry, and it is complemented by many annotated exercises." ¿ Monatshefte F. Mathematik "This is one of the best (if even not just the best) book for those who want to get a good, smooth and quick, but yet thorough introduction to modern Riemannian geometry." ¿ Publicationes Mathematicae Contents: Differential Manifolds * Riemannian Metrics * Affine Connections; Riemannian Connections * Geodesics; Convex Neighborhoods * Curvature * Jacobi Fields * Isometric Immersions * Complete Manifolds; Hopf-Rinow and Hadamard Theorems * Spaces of Constant Curvature * Variations of Energy * The Rauch Comparison Theorem * The Morse Index Theorem * The Fundamental Group of Manifolds of Negative Curvature * The Sphere Theorem * Index Series: Mathematics: Theory and Applications

Otros catálogos

Índice

  • Preface to the 1st edition * Preface to the 2nd edition * Preface to the English edition * How to use this book * 0. Differentiable Manifolds * 1. Riemannian Metrics * 2. Affine Connections; Riemannian Connections * 3. Geodesics; Convex Neighborhoods * 4. Curvature * 5. Jacobi Fields * 6. Isometric Immersions * 7. Complete Manifolds; Hopf-Rinow and Hadamard Theorems * 8. Spaces of Constant Curvature * 9. Variations of Energy * 10. The Rauch Comparison Theorem * 11. The Morse Index Theorem * 12. The Fundamental Group of Manifolds of Negative Curvature * 13. The Sphere Theorem * References * Index



Fundación Dialnet

Mi Documat

Opciones de libro

Opciones de compartir

Opciones de entorno