Ir al contenido

Documat


Visualization, Explanation and Reasoning Styles in Mathematics

Imagen de portada del libro Visualization, Explanation and Reasoning Styles in Mathematics

Información General

  • Autores: Paolo Mancosu Árbol académico, Stig Andur Pedersen, Klaus Frovin Jørgensen
  • Editores: Dordrecht (The Netherlands)" : Springer, 2005
  • Año de publicación: 2005
  • País: Países Bajos
  • Idioma: inglés
  • ISBN: 978-1-4020-3334-6, 978-1-4020-3335-3
  • Texto completo no disponible (Saber más ...)

Resumen

  • This book contains groundbreaking contributions to the philosophical analysis of mathematical practice. Several philosophers of mathematics have recently called for an approach to philosophy of mathematics that pays more attention to mathematical practice. Questions concerning concept-formation, understanding, heuristics, changes in style of reasoning, the role of analogies and diagrams, etc. have become the subject of intense interest. The historians and philosophers in this book agree that there is more to understanding mathematics than a study of its logical structure. How are mathematical objects and concepts generated? How does the process tie up with justification? What role do visual images and diagrams play in mathematical activity? What are the different epistemic virtues (explanatoriness, understanding, visualizability, etc.) which are pursued and cherished by mathematicians in their work? The reader will find here systematic philosophical analyses as well as a wealth of philosophically informed case studies ranging from Babylonian, Greek, and Chinese mathematics to nineteenth century real and complex analysis.

Otros catálogos

Índice

  • Contributing Authors.
    P. Mancosu, K.P. Jørgensen and S.A. Pedersen: Introduction.
    Part I. Mathematical Reasoning And Visualization.
    P. Mancosu: Visualization in Logic and Mathematics. 1. Diagrams and Images in the Late Nineteenth Century. 2. The Return of the Visual as a Change in Mathematical Style. 3. New Directions of Research and Foundations of Mathematics. Acknowledgements. Notes. References.
    M. Giaquinto: From Symmetry Perception to Basic Geometry. Introduction. 1. Perceiving a Figure as a Square. 2. A Geometrical Concept for Squares. 3. Getting the Belief. 4. Is It Knowledge? 5. Summary. Notes. References.
    J.R. Brown: Naturalism, Pictures, and Platonic Intuitions. 1. Naturalism. 2. Platonism. 3. Godel's Platonism. 4. The Concept of Observable. 5. Proofs and Intuitions. 6. Maddy's Naturalism. 7. Refuting the Continuum Hypothesis. Acknowledgements. Appendix: Freiling's "Philosophical" Refutation of CH. References.
    M. Giaquinto: Mathematical Activity. 1. Discovery. 2. Explanation. 3. Justification. 4. Refining and Extending the List of Activities. 5. Conc1uding Remarks. Notes. References.
    Part II. Mathematical Explanation and Proof Styles.
    J. Høyrup: Tertium Non Datur: On Reasoning Styles in Early Mathematics. 1. Two Convenient Scapegoats. 2. Old Babylonian Geometric Proto-algebra. 3. Euc1idean Geometry. 4. Stations on the Road. 5. Other Greeks. 6. Proportionality - Reasoning and its Elimination. Notes. References.
    K. Chemla: The Interplay Between Proof and AIgorithm in 3rd Century China: The Operation as Prescription of Computation and the Operation as Argument. 1. Elements of Context. 2. Sketch of the Proof. 3. First Remarks on the Proof. 4. The Operation as Relation of Transformation. 5. The Essential Link Between Proof and AIgorithm. 6. Conc1usion. Appendix. Notes. References.
    J. Tappenden: Proof Style and Understanding in Mathematics I: Visualization, Unification and Axiom Choice. 1. Introduction - a "New Riddle" of Deduction. 2. Understanding and Explanation in Mathematical Methodology: The Target. 3. Understanding, Unification and Explanation – Friedman. 4. Kitcher: Pattems of Argument. 5. Artin and Axiom Choice: "Visual Reasoning" Without Vision. 6. Summary - the "new Riddle of Deduction". Notes. References.
    J. Hafner and P. Mancosu: The Varieties of Mathematical Explanations. 1. Back to the Facts Themselves. 2. Mathematical Explanation or Explanation in Mathematics? 3. The Search for Explanation within Mathematics. 4. Some Methodological Comments on the General Project. 5. Mark Steiner on Mathematical Explanation. 6. Kummer's Convergence Test. 7. A Test Case for Steiner's Theory. Appendix. Notes. References.
    R. Netz: The Aesthetics of Mathematics: A Study. 1. The Problem Motivated. 2. Sources of Beauty in Mathematics. 3. Conclusion. Notes. References.
    Index.



Fundación Dialnet

Mi Documat

Opciones de libro

Opciones de compartir

Opciones de entorno