Ir al contenido

Documat


Optimization Theory and Methods

Imagen de portada del libro Optimization Theory and Methods

Información General

  • Autores: Wenyu Sun, Ya-Xiang Yuan
  • Editores: New York : Springer, 2006
  • Año de publicación: 2006
  • País: Estados Unidos
  • Idioma: inglés
  • ISBN: 978-0-387-24975-9, 978-0-387-24976-6
  • Texto completo no disponible (Saber más ...)

Resumen

  • This book, a result of the author's teaching and research experience in various universities and institutes over the past ten years, can be used as a textbook for an optimization course for graduates and senior undergraduates. It systematically describes optimization theory and several powerful methods, including recent results. For most methods, the authors discuss an idea’s motivation, study the derivation, establish the global and local convergence, describe algorithmic steps, and discuss the numerical performance. The book deals with both theory and algorithms of optimization concurrently. It also contains an extensive bibliography. Finally, apart from its use for teaching, Optimization Theory and Methods will be very beneficial as a research reference.

Otros catálogos

Índice

  • Preface
    1 Introduction
    1.1 Introduction
    1.2 Mathematics Foundations
    1.2.1 Norm
    1.2.2 Inverse and Generalized Inverse of a Matrix
    1.2.3 Properties of Eigenvalues
    1.2.4 Rank-One Update
    1.2.5 Function and Differential
    1.3 Convex Sets and Convex Functions
    1.3.1 Convex Sets
    1.3.2 Convex Functions
    1.3.3 Separation and Support of Convex Sets
    1.4 Optimality Conditions for Unconstrained Case
    1.5 Structure of Optimization Methods
    Exercises
    2 Line Search
    2.1 Introduction
    2.2 Convergence Theory for Exact Line Search
    2.3 Section Methods
    2.3.1 The Golden Section Method
    2.3.2 The Fibonacci Method
    2.4 Interpolation Method
    2.4.1 Quadratic Interpolation Methods
    2.4.2 Cubic Interpolation Method
    2.5 Inexact Line Search Techniques
    2.5.1 Armijo and Goldstein Rule
    2.5.2 Wolfe-Powell Rule
    2.5.3 Goldstein Algorithm and Wolfe-Powell Algorithm
    2.5.4 Backtracking Line Search
    2.5.5 Convergence Theorems of Inexact Line Search
    Exercises
    3 Newton’s Methods
    3.1 The Steepest Descent Method
    3.1.1 The Steepest Descent Method
    3.1.2 Convergence of the Steepest Descent Method
    3.1.3 Barzilai and Borwein Gradient Method
    3.1.4 Appendix: Kantorovich Inequality
    3.2 Newton’s Method
    3.3 Modified Newton’s Method
    3.4 Finite-Difference Newton’s Method
    3.5 Negative Curvature Direction Method
    3.5.1 Gill-Murray Stable Newton’s Method
    3.5.2 Fiacco-McCormick Method
    3.5.3 Fletcher-Freeman Method
    3.5.4 Second-Order Step Rules
    3.6 Inexact Newton’s Method
    Exercises
    4 Conjugate Gradient Method
    4.1 Conjugate Direction Methods
    4.2 Conjugate Gradient Method
    4.2.1 Conjugate Gradient Method
    4.2.2 Beale’s Three-Term Conjugate Gradient Method
    4.2.3 Preconditioned Conjugate Gradient Method
    4.3 Convergence of Conjugate Gradient Methods
    4.3.1 Global Convergence of Conjugate Gradient Methods
    4.3.2 Convergence Rate of Conjugate Gradient Methods
    Exercises
    5 Quasi-Newton Methods
    5.1 Quasi-Newton Methods
    5.1.1 Quasi-Newton Equation
    5.1.2 Symmetric Rank-One (SR1) Update
    5.1.3 DFP Update
    5.1.4 BFGS Update and PSB Update
    5.1.5 The Least Change Secant Update
    5.2 The Broyden Class
    5.3 Global Convergence of Quasi-Newton Methods
    5.3.1 Global Convergence under Exact Line Search
    5.3.2 Global Convergence under Inexact Line Search
    5.4 Local Convergence of Quasi-Newton Methods
    5.4.1 Superlinear Convergence of General Quasi-Newton Methods
    5.4.2 Linear Convergence of General Quasi-Newton Methods
    5.4.3 Local Convergence of Broyden’s Rank-One Update
    5.4.4 Local and Linear Convergence of DFP Method
    5.4.5 Superlinear Convergence of BFGS Method
    5.4.6 Superlinear Convergence of DFP Method
    5.4.7 Local Convergence of Broyden’s Class Methods
    5.5 Self-Scaling Variable Metric (SSVM) Methods
    5.5.1 Motivation to SSVM Method
    5.5.2 Self-Scaling Variable Metric (SSVM) Method
    5.5.3 Choices of the Scaling Factor
    5.6 Sparse Quasi-Newton Methods
    5.7 Limited Memory BFGS Method
    Exercises
    6 Trust-Region and Conic Model Methods
    6.1 Trust-Region Methods
    6.1.1 Trust-Region Methods
    6.1.2 Convergence of Trust-Region Methods
    6.1.3 Solving A Trust-Region Subproblem
    6.2 Conic Model and Collinear Scaling Algorithm
    6.2.1 Conic Model
    6.2.2 Generalized Quasi-Newton Equation
    6.2.3 Updates that Preserve Past Information
    6.2.4 Collinear Scaling BFGS Algorithm
    6.3 Tensor Methods
    6.3.1 Tensor Method for Nonlinear Equations
    6.3.2 Tensor Methods for Unconstrained Optimization
    Exercises
    7 Nonlinear Least-Squares Problems
    7.1 Introduction
    7.2 Gauss-Newton Method
    7.3 Levenberg-Marquardt Method
    7.3.1 Motivation and Properties
    7.3.2 Convergence of Levenberg-Marquardt Method
    7.4 Implementation of L-M Method
    7.5 Quasi-Newton Method
    Exercises
    8 Theory of Constrained Optimization
    8.1 Constrained Optimization Problems
    8.2 First-Order Optimality Conditions
    8.3 Second-Order Optimality Conditions
    8.4 Duality
    Exercises
    9 Quadratic Programming
    9.1 Optimality for Quadratic Programming
    9.2 Duality for Quadratic Programming
    9.3 Equality-Constrained Quadratic Programming
    9.4 Active Set Methods
    9.5 Dual Method
    9.6 Interior Ellipsoid Method
    9.7 Primal-Dual Interior-Point Methods
    Exercises
    10 Penalty Function Methods
    10.1 Penalty Function
    10.2 The Simple Penalty Function Method
    10.3 Interior Point Penalty Functions
    10.4 Augmented Lagrangian Method
    10.5 Smooth Exact Penalty Functions
    10.6 Nonsmooth Exact Penalty Functions
    Exercises
    11 Feasible Direction Methods
    11.1 Feasible Point Methods
    11.2 Generalized Elimination
    11.3 Generalized Reduced Gradient Method
    11.4 Projected Gradient Method
    11.5 Linearly Constrained Problems
    Exercises
    12 Sequential Quadratic Programming
    12.1 Lagrange-Newton Method
    12.2 Wilson-Han-Powell Method
    12.3 Superlinear Convergence of SQP Step
    12.4 Maratos Effect
    12.5 Watchdog Technique
    12.6 Second-Order Correction Step
    12.7 Smooth Exact Penalty Functions
    12.8 Reduced Hessian Matrix Method
    Exercises
    13 TR Methods for Constrained Problems
    13.1 Introduction
    13.2 Linear Constraints
    13.3 Trust-Region Subproblems
    13.4 Null Space Method
    13.5 CDT Subproblem
    13.6 Powell-Yuan Algorithm
    Exercises
    14 Nonsmooth Optimization
    14.1 Generalized Gradients
    14.2 Nonsmooth Optimization Problem
    14.3 The Subgradient Method
    14.4 Cutting Plane Method
    14.5 The Bundle Methods
    14.6 Composite Nonsmooth Function
    14.7 Trust Region Method for Composite Problems
    14.8 Nonsmooth Newton’s Method
    Exercises
    Appendix: Test Functions
    x1. Test Functions for Unconstrained Optimization Problems
    x2. Test Functions for Constrained Optimization Problems
    Bibliography
    Index



Fundación Dialnet

Mi Documat

Opciones de libro

Opciones de compartir

Opciones de entorno