Ir al contenido

Documat


Revisión de algoritmos de detección y seguimiento de objetos con redes profundas para videovigilancia inteligente

  • Autores: David Ameijeiras Sánchez, Héctor Raúl González Diez, Yanio Hernández Heredia
  • Localización: Revista Cubana de Ciencias Informáticas, ISSN-e 2227-1899, Vol. 14, Nº. 3, 2020
  • Idioma: español
  • Títulos paralelos:
    • Algorithms for detection and tracking objects with deep networks for intelligent video surveillance: A review
  • Enlaces
  • Resumen
    • español

      En la actualidad cada vez más se utilizan las redes neuronales profundas para resolver problemas de visión por computadora, como el reconocimiento y seguimiento de personas a través de una red de cámaras. Se realizó una revisión de los principales algoritmos de rastreo y detección de objetos, basados en redes profundas que permitirían conformar la arquitectura de un sistema de videovigilancia inteligente. Se determinó que: los algoritmos one-stage, son considerablemente más rápidos que los basados en propuestas de regiones, donde destaca SSD, y los algoritmos de rastreo offline tienen una mayor precisión comparado con los online, destacando a DeepSort como el más eficiente.

    • English

      Today, deep neural networks are increasingly used to solve computer vision problems, such as recognizing and tracking people through a network of cameras. A review of the main algorithms for tracking and object detection, based on deep networks, was carried out, which would make it possible to shape the architecture of an intelligent video surveillance system. It was determined that: one-stage algorithms are considerably faster than those based on region proposals, where SSD stands out, and offline tracking algorithms have a higher accuracy compared to online ones, highlighting DeepSort as the most efficient.

  • Referencias bibliográficas
    • Aidouni, E,Manal. (2019). Understanding YOLO and YOLOv2..
    • Bewley, Alex,Ge, Zongyuan,Ott, Lionel,Ramos, Fabio,Upcroft, Ben. (2016). Simple online and realtime tracking.. International Conference on...
    • Ankit, S. (2017). A Quick Guide to Object Tracking: MDNET, GOTURN, ROLO.
    • Arcos-Garcia, A,Aalvarez-Garcia, J.A,Ssoria-Morillo, L. (2018). Evaluation of deep neural networks for traffic sign detection systems.. Neurocomputing....
    • Bathija, A,Sharma, P. (2019). Visual Object Detection and Tracking using YOLO and SORT. Visual Object Detection and Tracking using YOLO and...
    • Bochkovskiy, A,Wang, C.-Y,Liao, H.-Y.M. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection.
    • Ciaparrone, G,Luque Sanchez, F,Tabik, S,Troiano, L,Tagliaferri, R,Herrera, F. (2019). Deep learning in video multi-object tracking: A survey.....
    • Dai, Jifeng,Li, Y,He, K,Sun, J. (2016). R-FCN: Object detection via region-based fully convolutional networks.. En Advances in neural information...
    • Darwishalzughaibi, A,Ahmed Hakami, H. (2015). Review of Human Motion Detection based on Background Subtraction Techniques.. International...
    • Ding, X,Li, X. (2013). Target tracking algorithm of information detection for wireless sensor network.. Journal of Computer Applications....
    • Duffy,Flynn. (2017). Year in Computer Vision. The M Tank.
    • Durán Suárez, J. (2017). Redes neuronales convolucionales en R: Reconocimiento de caracteres escritos a mano.. S.l.: Universidad de Sevilla....
    • E Qing, D,Jun, F,Zhang, Y.M. (2013). Human Motion Analysis Based On Silhouette and Centroid Displacement.. Applied Mechanics and Materials....
    • Fernandez-Carrobles, M.M,Deniz, O,Maroto, F. (2019). Gun and Knife Detection Based on Faster R-CNN for Video Surveillance.. Pattern Recognition...
    • Fomin, I.S,Bakhshiev, A.V. (2019). Research on Convolutional Neural Network for Object Classification in Outdoor Video Surveillance System....
    • Friedman, J,Hastie, T,Tibshirani, R. (2001). The elements of statistical learning.. Springer series in statistics. New York..
    • Galarza, B,Michelle, A,Flores, M. (2018). Deteccion de peatones en la noche usando Faster R-CNN e imágenes infrarrojas.. Ingenius.
    • Gallehuillos, C,Belongie, S. (2010). Context based object categorization: A critical survey.. Computer Vision and Image Understanding.Elsevier...
    • Girshick, R. (2015). Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV). 1440
    • (1955). Haroldwkuhn The hungarian method for the assignment problem.. Naval research logistics quarterly. 2. 83-97
    • He, K,Gkioxari, G,Dollár, P,Girshick, R. (2017). Mask RCNN. 2017 IEEE International Conference on Computer Vision. 1440
    • He, K,Zhang, X,Ren, S,Sun, J. (2014). Spatial pyramid pooling in deep convolutional networks for visual recognition. ECCV.
    • Henriques, J,Caseiro, R,Martins, P,Batista, J. (2015). High-Speed Tracking with Kernelized Correlation Filters.. Transactions on Pattern Analysis...
    • Jia, H.-X,Zhan, G.-J. (2009). Multiple Kernels Based Object Tracking Using Histograms of Oriented Gradients. Acta Automatica Sinica.. China...
    • Kalman, R.E. (1960). A new approach to linear filtering and prediction problems.. Journal of basic. Engineering. 82. 35-45
    • Law, H,Deng, J. (2018). CornerNet: Detecting objects as paired keypoints. ECCV.. Meta learning for semisupervised few shot classification.
    • Leal-Taixe, L,Milan, A,Reid, I,Roth, S,Konrad, S. (2015). Towards a benchmark for multi-target tracking.
    • Liu, Li. (2020). Deep learning for generic object detection: A survey.. International journal of computer vision. 128. 261-318
    • Liu, Wei,Anguelov, D,Eehan, D,Szegedy, C,Reed, S,Fu, C.-Y,Berg, A.C. (2016). SSD: Single Shot MultiBox Detector.. Computer Vision ECCV.
    • Liu, W,Luo, Y.-N,Sun, N. (2009). Mean Shift tracking algorithm based on background optimization.. Journal of Computer Applications. 29. 1015
    • Lowe, Y,David, G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision. Springer Science...
    • Nam, H,Han, B. (2013). Learning Multi-Domain Convolutional Neural Networks for Visual Tracking.
    • Nicolai Wojke, D.P,Bewley, Alex. (2017). SIMPLE ONLINE AND REALTIME TRACKING WITH A DEEP ASSOCIATION METRIC. International Conference on Image...
    • Ning, G,Zhang, Z,Huang, C,Ren, X,Wang, H,Cai, C,He, Z. (2017). Spatially supervised recurrent convolutional neural networks for visual object...
    • Pal, S.K,Shiu, S.C.K. (2004). Foundations of Case-Based Reasoning. JohnWiley & Sons, Inc.
    • Petrosino, A,Maddalena, L. (2012). Neural Networks in Video Surveillance: A Perspective View..
    • Piotr, D,Ron, A,Serge, B,Pietro, P. (2014). Fast feature pyramids for object detection.. IEEE Transactions on Pattern Analysis and Machine...
    • Redmon, J,Divvala, S,Girshick, R,Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection.. 2016 IEEE Conference on Computer...
    • Redmon, J,Farhadi, A. (2017). YOLO9000: Better, Faster, Stronger. 2017 IEEE. Conference on Computer Vision and Pattern Recognition (CVPR).
    • Redmon, J,Farhadi, A. (2018). YOLOv3:An Incremental Improvement..
    • Ren, S,He, K,Girshick, R,Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks.. Advances in neural...
    • Ren, S,He, K,Girshick, R,Sun, J. (2017). Faster R-CNN: Towards Real Time Object Detection with Region Proposal Networks.. IEEE Transactions...
    • Russakovsky, O,Deng, Jia,Su, Hao,Krause, Jonathan,Satheesh, Sanjeev,Ma, Sean,Huang, Zuiheng,Karpaathy, Andrej,Khosla, Aditya,Bernstein, Michael,Alexander,...
    • Salas, R. (2004). Redes neuronales artificiales.. Universidad de Valparaıso. Departamento de Computación.
    • Santos, L. (2013). GoogleNet Artificial Inteligence..
    • Lin, M,Chen, Q,Yan, S. (2013). Network in network.
    • Sreenu, G,Saleem Dueai, A. (2019). Intelligent video surveillance: a review through deep learning techniques for crowd analysis.. Journal...
    • Sun, J. (2012). A Fast MEANSHIFT Algorithm-Based Target Tracking System. Sensors. 12. 8218
    • Vassilios, T,Tasos, D. (2018). Video surveillance systems-current status and future trends.. Computers&Electrical Engineering. Elsevier...
    • Wang, X. (2013). Intelligent multi-camera video surveillance: A review.. Pattern Recognition Letters. 34. 3
    • Wei, H,Kehtarnavaz, N. (2019). Semi-Supervised Faster RCNN-Based Person Detection and Load Classification for Far Field Video Surveillance.....
    • Witten, I.H,Frank, E. (2005). Data Mining: Practical machine learning tools and techniques.. Morgan Kaufmann.
    • Zhang, X,Yang, Y,Han, Z,Wang, H,Gao, C. (2013). Object class detection: A survey.. ACM Computing Surveys. 46.
    • Zhang, Y,Wang, J,Yang, X. (2017). Real-time vehicle detection and tracking in video based on faster R-CNN.. Journal of Physics: Conference...
    • Zhansheng, X. (2013). Application of Moving Object Tracking Based on Kalman Filter Algorithm.. Journal of Applied Sciences. Science Alert....
    • Zhao, Z.-Q,Zheng, P,Xu, S,Wu, X. (2019). Object detection with deep learning: A review.. IEEE transactions on neural networks and learning...
Los metadatos del artículo han sido obtenidos de SciELO Cuba

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno