Ir al contenido

Documat


Systematic Literature Review of Machine Learning Models for Detecting DDoS Attacks in IoT Networks

  • Luengo Viñuela, Marcos [1] ; Román Gallego, Jesús-Ángel [1]
    1. [1] Universidad de Salamanca

      Universidad de Salamanca

      Salamanca, España

  • Localización: ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, ISSN-e 2255-2863, Vol. 13, Nº. 1, 2024
  • Idioma: inglés
  • DOI: 10.14201/adcaij.31919
  • Enlaces
  • Resumen
    • The escalating integration of Internet of Things (IoT) devices has led to a surge in data generation within networks, consequently elevating the vulnerability to Distributed Denial of Service (DDoS) attacks. Detecting such attacks in IoT Networks is critical, and Machine Learning (ML) models have shown efficacy in this realm. This study conducts a systematic review of literature from 2018 to 2023, focusing on DDoS attack detection in IoT Networks using deep learning techniques. Employing the PRISMA methodology, the review identifies and evaluates studies, synthesizing key findings/2**. It highlights that incorporating deep learning significantly enhances DDoS attack detection precision and efficiency, achieving detection rates between 94 % and 99 %. Despite progress, challenges persist, such as limited training data and IoT device processing constraints with large data volumes. This review underscores the importance of addressing these challenges to improve DDoS attack detection in IoT Networks. The research's significance lies in IoT's growing importance and security concerns. It contributes by showcasing current state-of-the-art DDoS detection through deep learning while outlining persistent challenges. Recognizing deep learning's effectiveness sets the stage for refining IoT security protocols, and moreover, by identifying challenges, the research informs strategies to enhance IoT security, fostering a resilient framework.

  • Referencias bibliográficas
    • Alaba, F., Hammoudeh, M., & Newman, R. (2021). IoT-23: A dataset of 23 IoT devices for intrusion detection. En 2021 7th International...
    • Ali, T. E., Chong, Y.-W., & Manickam, S. (2023). Machine learning techniques to detect a DDoS attack in SDN: A systematic review. Applied...
    • Alrawashdeh, S., Hossain, M. S., & Al-Dmour, H. (2020). MQTT-IoT-IDS2020: A dataset for evaluating the performance of intrusion detection...
    • Alshammari, R., & Zincir-Heywood, A. N. (2020). CICDDoS2019: A new dataset for DDoS attacks and normal traffic. En 2020 IEEE 19th International...
    • Aswad, F. M., Ahmed, A. M. S., Alhammadi, N. A. M., Khalaf, B. A., & Mostafa, S. A. (2023). Deep learning in distributed denial-of-service...
    • Awajan, A. (2023). A novel deep learning-based intrusion detection system for IoT Networks. Computers, 12(2). 10.3390/computers12020034
    • ElKashlan, M., Aslan, H., & Azer, M. (2022). DDoS attack detection in IoT using machine learning-based intrusion detection system (IDS)....
    • Farukee, M. B., Shabit, M. S. Z., Haque, M. R., & Sattar, A. H. M. S. (2021). DDoS attack detection in IoT Networks using deep learning...
    • Gartner. (2021). Forecast: Internet of Things — Endpoints and Associated Services, Worldwide, 2021.
    • Jain, R. (2021). WUSTL-IIOT-2021 dataset. https://www.cse.wustl.edu/~jain/iiot2/index.html
    • Khanday, S. A., Fatima, H., & Rakesh, N. (2023). Implementation of intrusion detection model for DDoS attacks in lightweight IoT Networks....
    • Kolias, C., Kambourakis, G., Stavrou, A., & Voas, J. (2018). BoT-IoT: A dataset for IoT botnet attacks.
    • Laboratory, L. (1998). 1998 DARPA intrusion detection evaluation dataset.
    • Labs, F. (2022). 2022 application protection report: In expectation of exfiltration.
    • Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The...
    • Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L. A., & PRISMA-P Group. (2015)....
    • Moustafa, N., & Slay, J. (2015). UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set)....
    • Ramos, D., Marin, J. M., de Goyeneche, J.-M., & Lopez, D. R. (2020). TON-IoT: A novel dataset for building IoT intrusion detection systems.
    • Sangodoyin, A. O., Akinsolu, M. O., Pillai, P., & Grout, V. (2021). Detection and classification of DDoS flooding attacks on software-defined...
    • Schardt, C., Adams, M. B., Owens, T., Keitz, S., & Fontelo, P. (2007). Utilization of the PICO framework to improve searching PubMed for...
    • Sharafaldin, I., Lashkari, A. H., & Ghorbani, A. A. (2018). Toward generating a new intrusion detection dataset and intrusion traffic...
    • Shiravi, A., Shiravi, H., Tavallaee, M., & Ghorbani, A. A. (2012). Toward developing a systematic approach to generate benchmark datasets...
    • Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). A detailed analysis of the KDD CUP 99 data set. En 2009 IEEE Symposium on...
    • Vieira, M. N., Oliveira, L. P., & Carneiro, L. (2022). A comparative analysis of machine learning algorithms for distributed intrusion...
    • Wehbi, K., Hong, L., Al-salah, T., & Bhutta, A. A. (2019). A survey on machine learning-based detection on DDoS attacks for IoT systems....
    • Zhang, Y., Liu, Y., Guo, X., Liu, Z., Zhang, X., & Liang, K. (2022). A BiLSTM-based DDoS attack detection method for edge computing. Energies,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno