Ir al contenido

Documat


Optimized Deep Belief Network for Efficient Fault Detection in Induction Motor

  • Katta, Pradeep [1] ; Karunanithi, K. [1] ; Raja, S. P. [2] ; Ramesh, S. [1] ; Prakash, S. Vinoth John [1] ; Joseph, Deepthi [3]
    1. [1] School of Electrical and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamilnadu, India
    2. [2] School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamilnadu, India
    3. [3] Department of Electrical and Electronics Engineering, Vel Tech Multi Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, Tamilnadu, India
  • Localización: ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, ISSN-e 2255-2863, Vol. 13, Nº. 1, 2024
  • Idioma: inglés
  • DOI: 10.14201/adcaij.31616
  • Enlaces
  • Resumen
    • Numerous industrial applications depend heavily on induction motors and their malfunction causes considerable financial losses. Induction motors in industrial processes have recently expanded dramatically in size, and complexity of defect identification and diagnostics for such systems has increased as well. As a result, research has concentrated on developing novel methods for the quick and accurate identification of induction motor problems.In response to these needs, this paper provides an optimised algorithm for analysing the performance of an induction motor. To analyse the operation of induction motors, an enhanced methodology on Deep Belief Networks (DBN) is introduced for recovering properties from the sensor identified vibration signals. Restricted Boltzmann Machine (RBM) is stacked utilizing multiple units of DBN model, which is then trained adopting Ant colony algorithm.An innovative method of feature extraction for autonomous fault analysis in manufacturing is provided by experimental investigations utilising vibration signals and overall accuracy of 99.8% is obtained, which therefore confirms the efficiency of DBN architecture for features extraction.

  • Referencias bibliográficas
    • Agah, G. R., Rahideh, A., Khodadadzadeh, H., Khoshnazar, S. M. & Hedayatikia, S. (2022). Broken rotor bar and rotor eccentricity fault...
    • Benninger, M., Liebschner, M. & Kreischer, C. (2023). Fault Detection of Induction Motors with Combined Modeling-and Machine-Learning-Based...
    • Chang, Y., Yan, H., Huang, W., Quan, R. & Zhang, Y. (2023). A novel starting method with reactive power compensa-tion for induction motors....
    • Choudhary, A., Goyal, D. & Letha, S. S. (2020). Infrared thermography-based fault diagnosis of induction motor bea-rings using machine...
    • Hao, H., Fuzhou, F., Feng, J., Xun, Z., Junzhen, Z., Jun, X., Pengcheng, J., Yazhi, L., Yongchan, Q., Guanghui, S. & Caishen, C. (2022)....
    • Husari, F. & Seshadrinath, J. (2021). Incipient inter turn fault detection and severity evaluation in electric drive system using hybrid...
    • Hussain, M., Memon, T. D., Hussain, I., AhmedMemon, Z. & Kumar, D. (2022). Fault Detection and Identification Using Deep Learning Algorithms...
    • Jyothi, R., Holla, T., Uma, R. K. & Jayapal, R. (2021). Machine learning based multi class fault diagnosis tool for voltage source inverter...
    • Kavitha, S., Bhuvaneswari, N. S., Senthilkumar, R. & Shanker, N. R. (2022). Magnetoresistance sensor-based rotor fault detection in induction...
    • Kumar, P. & Hati, A. S. (2021). Review on machine learning algorithm based fault detection in induction motors. Archives of Computational...
    • Le Roux, P. F. & Ngwenyama, M. K. (2022). Static and Dynamic simulation of an induction motor using Matlab/Simulink. Energies, 15(10),...
    • Liang, X., Ali, M. Z. & Zhang, H., 2019. Induction motors fault diagnosis using finite element method: A review. IEEE Transactions on...
    • Lopez-Gutierrez, R., Rangel-Magdaleno, J. D. J., Morales-Perez, C. J. & García-Perez, A. (2022). Induction machine bearing fault detection...
    • Martinez-Herrera, A. L., Ferrucho-Alvarez, E. R., Ledesma-Carrillo, L. M., Mata-Chavez, R. I., Lopez-Ramirez, M. & Ca-bal-Yepez, E. (2022)....
    • Misra, S., Kumar, S., Sayyad, S., Bongale, A., Jadhav, P., Kotecha, K., Abraham, A. & Gabralla, L. A. (2022). Fault detection in induction...
    • Namdar, A., Samet, H., Allahbakhshi, M., Tajdinian, M. & Ghanbari, T. (2022). A robust stator inter-turn fault detection in induction...
    • Roy, S. S., Dey, S. & Chatterjee, S. (2020). Auto correlation aided random forest classifier-based bearing fault detection framework....
    • Shi, Q. & Zhang, H. (2020). Fault diagnosis of an autonomous vehicle with an improved SVM algorithm subject to un-balanced datasets. IEEE...
    • Talhaoui, H., Ameid, T., Aissa, O. & Kessal, A. (2022). Wavelet packet and fuzzy logic theory for automatic fault detec-tion in induction...
    • Toma, R. N., Prosvirin, A. E. & Kim, J. M., 2020. Bearing fault diagnosis of induction motors using a genetic algorithm and machine learning...
    • Zahraoui, Y., Akherraz, M. & Ma’arif, A. (2022). A comparative study of nonlinear control schemes for induction motor operation improvement....
    • Zhao, X., Jia, M. & Liu, Z. (2020). Semi supervised graph convolution deep belief network for fault diagnosis of elector mechanical system...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno